Integrated Intelligent Method for Displacement Prediction in Underground Engineering

Integrated Intelligent Method for Displacement Prediction in Underground Engineering Considering the complicated monotonously increasing character of the displacement series in underground engineering, the original displacement sequence is divided into two components: the displacement trend sequence and the displacement deviation sequence. This study proposes a new, integrated intelligent method for displacement prediction in underground engineering which is the combining of the grey system method and the evolutionary neural network. The architecture and algorithmic parameters of the neural network simultaneously evolve by immunized evolutionary programming and MBP algorithm. In this method, the grey system method is used to predict the displacement trend sequence, which is one simple monotonous sequence; the evolutionary neural network is used to predict the displacement deviation sequence, which is one very complicated time series. The applications in various real underground engineering examples prove that the approximation sequence and the generalization predication sequence of the integrated intelligent method all coincide well with the measurement displacement sequence. The robustness, performance and applicability of the newly integrated intelligent method are far superior to those of the traditional method. Therefore, this method is an excellent means to predict the measurement displacements of underground engineering. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Neural Processing Letters Springer Journals

Integrated Intelligent Method for Displacement Prediction in Underground Engineering

Loading next page...
 
/lp/springer_journal/integrated-intelligent-method-for-displacement-prediction-in-Qcr64kH0u0
Publisher
Springer Journals
Copyright
Copyright © 2017 by Springer Science+Business Media, LLC
Subject
Computer Science; Artificial Intelligence (incl. Robotics); Complex Systems; Computational Intelligence
ISSN
1370-4621
eISSN
1573-773X
D.O.I.
10.1007/s11063-017-9685-4
Publisher site
See Article on Publisher Site

Abstract

Considering the complicated monotonously increasing character of the displacement series in underground engineering, the original displacement sequence is divided into two components: the displacement trend sequence and the displacement deviation sequence. This study proposes a new, integrated intelligent method for displacement prediction in underground engineering which is the combining of the grey system method and the evolutionary neural network. The architecture and algorithmic parameters of the neural network simultaneously evolve by immunized evolutionary programming and MBP algorithm. In this method, the grey system method is used to predict the displacement trend sequence, which is one simple monotonous sequence; the evolutionary neural network is used to predict the displacement deviation sequence, which is one very complicated time series. The applications in various real underground engineering examples prove that the approximation sequence and the generalization predication sequence of the integrated intelligent method all coincide well with the measurement displacement sequence. The robustness, performance and applicability of the newly integrated intelligent method are far superior to those of the traditional method. Therefore, this method is an excellent means to predict the measurement displacements of underground engineering.

Journal

Neural Processing LettersSpringer Journals

Published: Aug 9, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off