Insulin-like growth factor binding protein-2 interactions with Alzheimer’s disease biomarkers

Insulin-like growth factor binding protein-2 interactions with Alzheimer’s disease biomarkers Plasma levels of insulin-like growth factor binding protein-2 (IGFBP-2) have been associated with Alzheimer’s disease (AD) and brain atrophy. Some evidence suggests a potential synergistic effect of IGFBP-2 and AD neuropathology on neurodegeneration, while other evidence suggests the effect of IGFBP-2 on neurodegeneration is independent of AD neuropathology. Therefore, the current study investigated the interaction between plasma IGFBP-2 and cerebrospinal fluid (CSF) biomarkers of AD neuropathology on hippocampal volume and cognitive function. AD Neuroimaging Initiative data were accessed (n = 354, 75 ± 7 years, 38 % female), including plasma IGFBP-2, CSF total tau, CSF Aβ-42, MRI-quantified hippocampal volume, and neuropsychological performances. Mixed effects regression models evaluated the interaction between IGFBP-2 and AD biomarkers on hippocampal volume and neuropsychological performance, adjusting for age, sex, education, APOE ε4 status, and cognitive diagnosis. A baseline interaction between IGFBP-2 and CSF Aβ-42 was observed in relation to left (t(305) = −6.37, p = 0.002) and right hippocampal volume (t(305) = −7.74, p = 0.001). In both cases, higher IGFBP-2 levels were associated with smaller hippocampal volumes but only among amyloid negative individuals. The observed interaction suggests IGFBP-2 drives neurodegeneration through a separate pathway independent of AD neuropathology. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Brain Imaging and Behavior Springer Journals

Insulin-like growth factor binding protein-2 interactions with Alzheimer’s disease biomarkers

Loading next page...
 
/lp/springer_journal/insulin-like-growth-factor-binding-protein-2-interactions-with-Ixp2G6i1I1
Publisher
Springer US
Copyright
Copyright © 2016 by Springer Science+Business Media New York
Subject
Biomedicine; Neurosciences; Neuroradiology; Neuropsychology; Psychiatry
ISSN
1931-7557
eISSN
1931-7565
D.O.I.
10.1007/s11682-016-9636-0
Publisher site
See Article on Publisher Site

Abstract

Plasma levels of insulin-like growth factor binding protein-2 (IGFBP-2) have been associated with Alzheimer’s disease (AD) and brain atrophy. Some evidence suggests a potential synergistic effect of IGFBP-2 and AD neuropathology on neurodegeneration, while other evidence suggests the effect of IGFBP-2 on neurodegeneration is independent of AD neuropathology. Therefore, the current study investigated the interaction between plasma IGFBP-2 and cerebrospinal fluid (CSF) biomarkers of AD neuropathology on hippocampal volume and cognitive function. AD Neuroimaging Initiative data were accessed (n = 354, 75 ± 7 years, 38 % female), including plasma IGFBP-2, CSF total tau, CSF Aβ-42, MRI-quantified hippocampal volume, and neuropsychological performances. Mixed effects regression models evaluated the interaction between IGFBP-2 and AD biomarkers on hippocampal volume and neuropsychological performance, adjusting for age, sex, education, APOE ε4 status, and cognitive diagnosis. A baseline interaction between IGFBP-2 and CSF Aβ-42 was observed in relation to left (t(305) = −6.37, p = 0.002) and right hippocampal volume (t(305) = −7.74, p = 0.001). In both cases, higher IGFBP-2 levels were associated with smaller hippocampal volumes but only among amyloid negative individuals. The observed interaction suggests IGFBP-2 drives neurodegeneration through a separate pathway independent of AD neuropathology.

Journal

Brain Imaging and BehaviorSpringer Journals

Published: Nov 5, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off