Instantaneous pressure and material acceleration measurements using a four-exposure PIV system

Instantaneous pressure and material acceleration measurements using a four-exposure PIV system This paper describes a non-intrusive technique for measuring the instantaneous spatial pressure distribution over a sample area in a flow field. A four-exposure PIV system is used for measuring the distribution of material acceleration by comparing the velocity of the same group of particles at different times and then integrating it to obtain the pressure distribution. Exposing both cameras to the same particle field at the same time and cross-correlating the images enables precision matching of the two fields of view. Application of local image deformation correction to velocity vectors measured by the two cameras reduces the error due to relative misalignment and image distortion to about 0.01 pixels in synthetic images. An omni-directional virtual boundary integration scheme is introduced to integrate the acceleration while minimizing the effect of the local random errors in acceleration. Further improvements are achieved by iterations to correct the pressure along the boundary. Typically 3–5 iterations are sufficient for reducing the incremental mean pressure change in each iteration to less than 0.1% of the dynamic pressure. Validation tests of the principles of the technique using synthetic images of rotating and stagnation point flows show that the standard deviation of the measured pressure from the exact value is about 1.0%. This system is used to measure the instantaneous pressure and acceleration distributions of a 2D cavity turbulent flow field and sample results are presented. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Instantaneous pressure and material acceleration measurements using a four-exposure PIV system

Loading next page...
 
/lp/springer_journal/instantaneous-pressure-and-material-acceleration-measurements-using-a-SunrMNZeMu
Publisher
Springer Journals
Copyright
Copyright © 2006 by Springer-Verlag
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-006-0152-7
Publisher site
See Article on Publisher Site

Abstract

This paper describes a non-intrusive technique for measuring the instantaneous spatial pressure distribution over a sample area in a flow field. A four-exposure PIV system is used for measuring the distribution of material acceleration by comparing the velocity of the same group of particles at different times and then integrating it to obtain the pressure distribution. Exposing both cameras to the same particle field at the same time and cross-correlating the images enables precision matching of the two fields of view. Application of local image deformation correction to velocity vectors measured by the two cameras reduces the error due to relative misalignment and image distortion to about 0.01 pixels in synthetic images. An omni-directional virtual boundary integration scheme is introduced to integrate the acceleration while minimizing the effect of the local random errors in acceleration. Further improvements are achieved by iterations to correct the pressure along the boundary. Typically 3–5 iterations are sufficient for reducing the incremental mean pressure change in each iteration to less than 0.1% of the dynamic pressure. Validation tests of the principles of the technique using synthetic images of rotating and stagnation point flows show that the standard deviation of the measured pressure from the exact value is about 1.0%. This system is used to measure the instantaneous pressure and acceleration distributions of a 2D cavity turbulent flow field and sample results are presented.

Journal

Experiments in FluidsSpringer Journals

Published: May 3, 2006

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off