Instantaneous pressure and material acceleration measurements using a four-exposure PIV system

Instantaneous pressure and material acceleration measurements using a four-exposure PIV system This paper describes a non-intrusive technique for measuring the instantaneous spatial pressure distribution over a sample area in a flow field. A four-exposure PIV system is used for measuring the distribution of material acceleration by comparing the velocity of the same group of particles at different times and then integrating it to obtain the pressure distribution. Exposing both cameras to the same particle field at the same time and cross-correlating the images enables precision matching of the two fields of view. Application of local image deformation correction to velocity vectors measured by the two cameras reduces the error due to relative misalignment and image distortion to about 0.01 pixels in synthetic images. An omni-directional virtual boundary integration scheme is introduced to integrate the acceleration while minimizing the effect of the local random errors in acceleration. Further improvements are achieved by iterations to correct the pressure along the boundary. Typically 3–5 iterations are sufficient for reducing the incremental mean pressure change in each iteration to less than 0.1% of the dynamic pressure. Validation tests of the principles of the technique using synthetic images of rotating and stagnation point flows show that the standard deviation of the measured pressure from the exact value is about 1.0%. This system is used to measure the instantaneous pressure and acceleration distributions of a 2D cavity turbulent flow field and sample results are presented. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Instantaneous pressure and material acceleration measurements using a four-exposure PIV system

Loading next page...
 
/lp/springer_journal/instantaneous-pressure-and-material-acceleration-measurements-using-a-SunrMNZeMu
Publisher
Springer-Verlag
Copyright
Copyright © 2006 by Springer-Verlag
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-006-0152-7
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial