Instance-level worst-case query bounds on R-trees

Instance-level worst-case query bounds on R-trees Even with its significant impacts on the database area, the R-tree is often criticized by its lack of good worst-case guarantees. For example, in range search (where we want to report all the data points in a query rectangle), it is known that on adversely designed datasets and queries, an R-tree can be as slow as a sequential scan that simply reads all the data points. Nevertheless, R-trees work so well on real data that they have been widely implemented in commercial systems. This stark contrast has caused long-term controversy between practitioners and theoreticians as to whether this structure deserves its fame. This paper provides theoretical evidence that, somewhat surprisingly, R-trees are efficient in the worst case for range search on many real datasets. Given any integer $$K$$ K , we explain how to obtain an upper bound on the cost of answering all (i.e., infinitely many) range queries retrieving at most $$K$$ K objects. On practical data, the upper bound is only a fraction of the overhead of sequential scan (unless, apparently, $$K$$ K is at the same order as the dataset size). Our upper bounds are tight up to a constant factor, namely they cannot be lowered by more than $$O(1)$$ O ( 1 ) times while still capturing the most expensive queries. Our upper bounds can be calculated in constant time by remembering only three integers. These integers, in turn, are generated from only the leaf MBRs of an R-tree, but not the leaf nodes themselves. In practice, the internal nodes are often buffered in memory, so that the integers aforementioned can be efficiently maintained along with the data updates and made available to a query optimizer at any time. Furthermore, our analytical framework introduces instance-level query bound as a new technique for evaluating the efficiency of heuristic structures in a theory-flavored manner (previously, experimentation was the dominant assessment method). http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The VLDB Journal Springer Journals

Instance-level worst-case query bounds on R-trees

Loading next page...
 
/lp/springer_journal/instance-level-worst-case-query-bounds-on-r-trees-L7hJdwbPEA
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2014 by Springer-Verlag Berlin Heidelberg
Subject
Computer Science; Database Management
ISSN
1066-8888
eISSN
0949-877X
D.O.I.
10.1007/s00778-013-0339-5
Publisher site
See Article on Publisher Site

Abstract

Even with its significant impacts on the database area, the R-tree is often criticized by its lack of good worst-case guarantees. For example, in range search (where we want to report all the data points in a query rectangle), it is known that on adversely designed datasets and queries, an R-tree can be as slow as a sequential scan that simply reads all the data points. Nevertheless, R-trees work so well on real data that they have been widely implemented in commercial systems. This stark contrast has caused long-term controversy between practitioners and theoreticians as to whether this structure deserves its fame. This paper provides theoretical evidence that, somewhat surprisingly, R-trees are efficient in the worst case for range search on many real datasets. Given any integer $$K$$ K , we explain how to obtain an upper bound on the cost of answering all (i.e., infinitely many) range queries retrieving at most $$K$$ K objects. On practical data, the upper bound is only a fraction of the overhead of sequential scan (unless, apparently, $$K$$ K is at the same order as the dataset size). Our upper bounds are tight up to a constant factor, namely they cannot be lowered by more than $$O(1)$$ O ( 1 ) times while still capturing the most expensive queries. Our upper bounds can be calculated in constant time by remembering only three integers. These integers, in turn, are generated from only the leaf MBRs of an R-tree, but not the leaf nodes themselves. In practice, the internal nodes are often buffered in memory, so that the integers aforementioned can be efficiently maintained along with the data updates and made available to a query optimizer at any time. Furthermore, our analytical framework introduces instance-level query bound as a new technique for evaluating the efficiency of heuristic structures in a theory-flavored manner (previously, experimentation was the dominant assessment method).

Journal

The VLDB JournalSpringer Journals

Published: Aug 1, 2014

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off