Instance-level worst-case query bounds on R-trees

Instance-level worst-case query bounds on R-trees Even with its significant impacts on the database area, the R-tree is often criticized by its lack of good worst-case guarantees. For example, in range search (where we want to report all the data points in a query rectangle), it is known that on adversely designed datasets and queries, an R-tree can be as slow as a sequential scan that simply reads all the data points. Nevertheless, R-trees work so well on real data that they have been widely implemented in commercial systems. This stark contrast has caused long-term controversy between practitioners and theoreticians as to whether this structure deserves its fame. This paper provides theoretical evidence that, somewhat surprisingly, R-trees are efficient in the worst case for range search on many real datasets. Given any integer $$K$$ K , we explain how to obtain an upper bound on the cost of answering all (i.e., infinitely many) range queries retrieving at most $$K$$ K objects. On practical data, the upper bound is only a fraction of the overhead of sequential scan (unless, apparently, $$K$$ K is at the same order as the dataset size). Our upper bounds are tight up to a constant factor, namely they cannot be lowered by more than $$O(1)$$ O ( 1 ) times while still capturing the most expensive queries. Our upper bounds can be calculated in constant time by remembering only three integers. These integers, in turn, are generated from only the leaf MBRs of an R-tree, but not the leaf nodes themselves. In practice, the internal nodes are often buffered in memory, so that the integers aforementioned can be efficiently maintained along with the data updates and made available to a query optimizer at any time. Furthermore, our analytical framework introduces instance-level query bound as a new technique for evaluating the efficiency of heuristic structures in a theory-flavored manner (previously, experimentation was the dominant assessment method). The VLDB Journal Springer Journals

Instance-level worst-case query bounds on R-trees

Loading next page...
Springer Berlin Heidelberg
Copyright © 2014 by Springer-Verlag Berlin Heidelberg
Computer Science; Database Management
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial