Instability threshold of a negatively buoyant fountain

Instability threshold of a negatively buoyant fountain Experimental simulations were carried out to investigate the onset of instability in negatively buoyant fountains by injecting glycerin–water mixtures into silicon oil. The transition from a stable to an unstable fountain structure is primarily governed by the Richardson number, and to a lesser extent, Reynolds number, viscosity ratio, Weber number and vent geometry. Transition nominally occurs at a Ri = 1.0. For a fountain issuing from a cylindrical pipe, the major effect of the Reynolds number is in determining whether or not the fountain is laminar or turbulent. The Reynolds number effect can be largely accounted for by basing a corrected Richardson number on the root mean square of the mean velocity. Viscosity ratio deviating from unity has the effect of stabilizing the flow structure and thereby reducing the transition Richardson number. Similarly, interfacial tension stabilizes the flow pattern resulting in a trend of increasing transition Richardson number with increasing Weber number. The results are valid in rectangular vents if the Richardson number and Reynolds number are based on the hydraulic diameter. Experiments in Fluids Springer Journals

Instability threshold of a negatively buoyant fountain

Loading next page...
Copyright © 2007 by Springer-Verlag
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial