Instabilities and elastic recoil of the two-fluid circular hydraulic jump

Instabilities and elastic recoil of the two-fluid circular hydraulic jump The two-fluid circular hydraulic jump, also called “rinsing flow,” is a common process where a jet of one liquid impinges upon a layer of a second liquid. We present an experimental analysis of rinsing flows using a high-speed camera and model fluids to decouple the effect of shear-thinning and elasticity. Varying the rheology of the coating fluid produced several types of instabilities at both the air–liquid interface and liquid–liquid interface. Layered “stepped jumps” and “crowning” on the rim of the jumps were both suppressed by fluid elasticity, while Saffman–Taylor fingering patterns showed strong dependence on both shear-thinning and normal stresses. In addition, the hydraulic jump evolution was quantitatively determined using a laser triangulation technique, and “recoil” of the jump front resulting from fluid elasticity was observed. Our work shows that the non-Newtonian two-fluid circular hydraulic jump is very complex, and the instabilities that arise also introduce additional complications when developing theoretical models. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Instabilities and elastic recoil of the two-fluid circular hydraulic jump

Loading next page...
 
/lp/springer_journal/instabilities-and-elastic-recoil-of-the-two-fluid-circular-hydraulic-3O0BicSby2
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2013 by Springer-Verlag Berlin Heidelberg
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-013-1645-9
Publisher site
See Article on Publisher Site

Abstract

The two-fluid circular hydraulic jump, also called “rinsing flow,” is a common process where a jet of one liquid impinges upon a layer of a second liquid. We present an experimental analysis of rinsing flows using a high-speed camera and model fluids to decouple the effect of shear-thinning and elasticity. Varying the rheology of the coating fluid produced several types of instabilities at both the air–liquid interface and liquid–liquid interface. Layered “stepped jumps” and “crowning” on the rim of the jumps were both suppressed by fluid elasticity, while Saffman–Taylor fingering patterns showed strong dependence on both shear-thinning and normal stresses. In addition, the hydraulic jump evolution was quantitatively determined using a laser triangulation technique, and “recoil” of the jump front resulting from fluid elasticity was observed. Our work shows that the non-Newtonian two-fluid circular hydraulic jump is very complex, and the instabilities that arise also introduce additional complications when developing theoretical models.

Journal

Experiments in FluidsSpringer Journals

Published: Jan 5, 2014

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off