Insights into the mechanisms of nucleation and growth of C–S–H on fillers

Insights into the mechanisms of nucleation and growth of C–S–H on fillers A complete understanding of the mechanisms upon which a filler acts in a cement-based material, e.g. as a C–S–H nucleation and/or growth-inducing factor, is of high importance. Although various studies report on accelerated cement hydration in the presence of fillers, the reason behind these observations is not completely understood yet. This work contributes to this subject, by providing an experimental evidence on the (electro) chemical aspects of the filler surface modification in the model solution, simulating the pore solution of cement paste. The nature of the various interactions with regard to the affinity of a filler surface towards C–S–H nucleation and growth was discussed in detail in this work with regard to zeta potential measurements of micronized sand and limestone particles in the model solutions. These results are further supported by microscopic observations of morphology and distribution of hydration products on the filler surfaces, together with considerations on thermodynamic principles in view of hydration products formation and distribution. The C–S–H nucleation and growth appeared to be due to the interactions between a filler surface and calcium ions in the pore solution. These interactions were determined by the chemical nature of the filler surface. The interaction mechanisms were found to be governed by relatively weak electrostatic forces in the case of micronized sand. This was reflected by a non-significant adsorption of calcium ions on the filler surface, resulting in non-uniformly distributed and less stable C–S–H nuclei. In contrast, the nucleation and growth of C–S–H on limestone particles were predominantly determined by donor–acceptor mechanisms, following moderate acid–base interactions. Consequently, a strong chemical bonding of calcium ions to a limestone surface resulted in a large amount of uniformly distributed C–S–H nuclei. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Materials and Structures Springer Journals

Insights into the mechanisms of nucleation and growth of C–S–H on fillers

Loading next page...
 
/lp/springer_journal/insights-into-the-mechanisms-of-nucleation-and-growth-of-c-s-h-on-fHyKk19kSJ
Publisher
Springer Netherlands
Copyright
Copyright © 2017 by The Author(s)
Subject
Engineering; Structural Mechanics; Materials Science, general; Theoretical and Applied Mechanics; Operating Procedures, Materials Treatment; Civil Engineering; Building Materials
ISSN
1359-5997
eISSN
1871-6873
D.O.I.
10.1617/s11527-017-1082-y
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial