Insights into chemoselective fluorination reaction of alkynals via N-heterocyclic carbene and Brønsted base cooperative catalysis

Insights into chemoselective fluorination reaction of alkynals via N-heterocyclic carbene and... A systematically theoretical study has been carried out to understand the mechanism and chemoselectivity of N-heterocyclic carbene (NHC)-catalyzed fluorination reaction of alkynals using density functional theory calculations. The calculated results reveal that the reaction contains several steps, i.e., formation of the actual catalyst NHC, the nucleophilic attack of NHC on the carbonyl carbon atom of a formyl group, the formation of Breslow intermediate, the removal of methyl carbonate group to afford cumulative allenol intermediate, C–F bond formation coupled with generation of (SO2Ph)2N− anion, esterification accompanied with formation of (SO2Ph)2NH, and dissociation of NHC from product. For the formation of Breslow intermediate via the [1,2]-proton transfer process, apart from the direct proton transfer mechanism, the H2O- and EtOH-mediated proton transfer mechanisms were also investigated, and the free energy barriers for the crucial proton transfer steps can be significantly lowered by explicit inclusion of the protic media EtOH. Furthermore, multiple analyses have also been performed to explore the roles of catalysts and origin of chemoselectivity. Noteworthily, the in situ formed Brønsted base (BB) (SO2Ph)2N− anion was found to play an indispensable role in the esterification process, indicating that the reaction undergoes NHC-BB cooperatively catalytic mechanism, which is remarkably different from the direct esterification pathway proposed in the experimental references. This theoretical work provides a case on the exploration of the dual catalysis in NHC chemistry, which is valuable for rational design on newly cooperative organocatalysis in future. Theoretical Chemistry Accounts Springer Journals

Insights into chemoselective fluorination reaction of alkynals via N-heterocyclic carbene and Brønsted base cooperative catalysis

Loading next page...
Springer Berlin Heidelberg
Copyright © 2017 by Springer-Verlag GmbH Germany
Chemistry; Theoretical and Computational Chemistry; Inorganic Chemistry; Organic Chemistry; Physical Chemistry; Atomic/Molecular Structure and Spectra
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial