Inositide signalling in Chlamydomonas: characterization of a phosphatidylinositol 3-kinase gene

Inositide signalling in Chlamydomonas: characterization of a phosphatidylinositol 3-kinase gene Phosphoinositide (PI) 3-kinases, which phosphorylate the D-3 position of the inositol ring, function in several different signalling pathways. The phosphatidylinositol (PtdIns)-specific PI 3-kinase of yeast (Vps34p) is part of a receptor signalling protein complex associated with the trans-Golgi membranes, whereas PI 3-kinases that phosphorylate polyphosphoinositides in animal cells form a major receptor-controlled signalling pathway in the plasma membrane. Recent studies have indicated the presence of active PLC, PLD, and PI 3-kinase-dependent signalling systems in the unicellular green alga Chlamydomonas, and PtdIns-3P in Chlamydomonas shows a particularly high rate of turnover. Here we report the cloning of the Chlamydomonas Vps34p, and some characterisation of its properties, regulation and localisation. A single-copy 12 kb gene was present. The corresponding protein of 122 kDa had full-length homology with Vps34ps from other species, but it contained a novel spacer-like insert region of 148 amino acid residues between homology region 2 (HR2) and the C-terminal catalytic core domain, and three other shorter putative inserts. Available cDNAs were used to assemble a pBluescript clone expressing a recombinant protein which had PtdIns-specific 3-kinase activity. However, an unexpected observation was that recombinant proteins containing the complete catalytic core, but lacking HR2, had no lipid kinase activity, pointing to a previously unsuspected role for this domain, possibly in substrate binding. VPS34 mRNA and protein levels, as determined by RNAse protection assays and by immunological methods respectively, were low in all cell stages that were examined. Western blotting of subcellular fractions revealed that most of Vps34p in cell lysates of cw-15 (a cell wall-deficient mutant) could be recovered in a NP-40-resistant 100,000 × g pellet, suggesting that the enzyme may have a location different from that found in higher plants. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Inositide signalling in Chlamydomonas: characterization of a phosphatidylinositol 3-kinase gene

Loading next page...
 
/lp/springer_journal/inositide-signalling-in-chlamydomonas-characterization-of-a-ieMEoo3y5J
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 1998 by Kluwer Academic Publishers
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1023/A:1005973423723
Publisher site
See Article on Publisher Site

Abstract

Phosphoinositide (PI) 3-kinases, which phosphorylate the D-3 position of the inositol ring, function in several different signalling pathways. The phosphatidylinositol (PtdIns)-specific PI 3-kinase of yeast (Vps34p) is part of a receptor signalling protein complex associated with the trans-Golgi membranes, whereas PI 3-kinases that phosphorylate polyphosphoinositides in animal cells form a major receptor-controlled signalling pathway in the plasma membrane. Recent studies have indicated the presence of active PLC, PLD, and PI 3-kinase-dependent signalling systems in the unicellular green alga Chlamydomonas, and PtdIns-3P in Chlamydomonas shows a particularly high rate of turnover. Here we report the cloning of the Chlamydomonas Vps34p, and some characterisation of its properties, regulation and localisation. A single-copy 12 kb gene was present. The corresponding protein of 122 kDa had full-length homology with Vps34ps from other species, but it contained a novel spacer-like insert region of 148 amino acid residues between homology region 2 (HR2) and the C-terminal catalytic core domain, and three other shorter putative inserts. Available cDNAs were used to assemble a pBluescript clone expressing a recombinant protein which had PtdIns-specific 3-kinase activity. However, an unexpected observation was that recombinant proteins containing the complete catalytic core, but lacking HR2, had no lipid kinase activity, pointing to a previously unsuspected role for this domain, possibly in substrate binding. VPS34 mRNA and protein levels, as determined by RNAse protection assays and by immunological methods respectively, were low in all cell stages that were examined. Western blotting of subcellular fractions revealed that most of Vps34p in cell lysates of cw-15 (a cell wall-deficient mutant) could be recovered in a NP-40-resistant 100,000 × g pellet, suggesting that the enzyme may have a location different from that found in higher plants.

Journal

Plant Molecular BiologySpringer Journals

Published: Oct 6, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off