Inhibitory effect of myb7 uORF on downstream gene expression in homologous (rice) and heterologous (tobacco) systems

Inhibitory effect of myb7 uORF on downstream gene expression in homologous (rice) and... The rice myb7 mRNA contains in its long leader an upstream open reading frame (uORF) putatively coding for a 40 amino acid peptide. uORFs have been found in the leader of mRNAs encoding transcriptional factors or other proteins involved in cellular growth and development. They are thought to translationally regulate the expression of downstream ORFs. Here, we showed the ability of the myb7 uORF to inhibit the expression of downstream reporter genes both in homologous (rice) and heterologous (tobacco) systems. This effect seems partially related to its translation, as indicated by the comparison with the mutagenized uORF. In both systems most of the inhibitory effect was due to the presence of the intercistronic region, in disagreement with the Kozak model. Moreover, replacing the uORF or the intercistronic region with a different one, we demonstrated that the inhibitory effect strictly depends on their co-presence. Finally, in vitro assays showed that the myb7 uORF is translated and inhibits the downstream ORF translation. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Inhibitory effect of myb7 uORF on downstream gene expression in homologous (rice) and heterologous (tobacco) systems

Loading next page...
 
/lp/springer_journal/inhibitory-effect-of-myb7-uorf-on-downstream-gene-expression-in-1SYDrscAnB
Publisher
Springer Journals
Copyright
Copyright © 2002 by Kluwer Academic Publishers
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1023/A:1013340004348
Publisher site
See Article on Publisher Site

Abstract

The rice myb7 mRNA contains in its long leader an upstream open reading frame (uORF) putatively coding for a 40 amino acid peptide. uORFs have been found in the leader of mRNAs encoding transcriptional factors or other proteins involved in cellular growth and development. They are thought to translationally regulate the expression of downstream ORFs. Here, we showed the ability of the myb7 uORF to inhibit the expression of downstream reporter genes both in homologous (rice) and heterologous (tobacco) systems. This effect seems partially related to its translation, as indicated by the comparison with the mutagenized uORF. In both systems most of the inhibitory effect was due to the presence of the intercistronic region, in disagreement with the Kozak model. Moreover, replacing the uORF or the intercistronic region with a different one, we demonstrated that the inhibitory effect strictly depends on their co-presence. Finally, in vitro assays showed that the myb7 uORF is translated and inhibits the downstream ORF translation.

Journal

Plant Molecular BiologySpringer Journals

Published: Oct 13, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off