Inhibition of viral hemorrhagic septicemia virus replication using a short hairpin RNA targeting the G gene

Inhibition of viral hemorrhagic septicemia virus replication using a short hairpin RNA targeting... RNA interference (RNAi), a mechanism for post-transcriptional silencing of homologous genes by double-stranded RNA (dsRNA), has emerged as an antiviral strategy in animals. In this study, the epithelioma papulosum cyprini (EPC) cell line, in combination with a fugu-U6-promoter-driven shRNA construct designed against G gene, was used to investigate whether short hairpin RNA (shRNA) could inhibit viral hemorrhagic septicemia virus (VHSV) proliferation by sequence-specific RNAi. The results showed that transfection with a shRNA-producing construct (shRNA-VG594) resulted in a sequence-specific knockdown of G gene mRNA in EPC cells. There were no significant differences in IFN-induced Mx1 gene expression among cells transfected with each shRNA vector including shRNA-VG594, -VG594sc (two nucleotides mismatch) and -EGFP (non-specific control), suggesting that knockdown of G gene expression was not due to an IFN response but instead by sequence-specific RNAi. Transfection of EPC cells with shRNA-VG594 conferred resistance to VHSV, and this anti-VHSV effect was not observed when using a two-nucleotide-mismatched shRNA-VG594sc or a shRNA targeting EGFP. Furthermore, shRNA-VG594 expressed in EPC cells did not confer protection against infectious hematopoietic necrosis virus (IHNV), suggesting sequence-specific RNAi-dependent suppression of viral replication. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Archives of Virology Springer Journals

Inhibition of viral hemorrhagic septicemia virus replication using a short hairpin RNA targeting the G gene

Loading next page...
 
/lp/springer_journal/inhibition-of-viral-hemorrhagic-septicemia-virus-replication-using-a-vRUWLm9Wrc
Publisher
Springer Vienna
Copyright
Copyright © 2011 by Springer-Verlag
Subject
Biomedicine; Virology ; Medical Microbiology ; Infectious Diseases
ISSN
0304-8608
eISSN
1432-8798
D.O.I.
10.1007/s00705-010-0882-y
Publisher site
See Article on Publisher Site

Abstract

RNA interference (RNAi), a mechanism for post-transcriptional silencing of homologous genes by double-stranded RNA (dsRNA), has emerged as an antiviral strategy in animals. In this study, the epithelioma papulosum cyprini (EPC) cell line, in combination with a fugu-U6-promoter-driven shRNA construct designed against G gene, was used to investigate whether short hairpin RNA (shRNA) could inhibit viral hemorrhagic septicemia virus (VHSV) proliferation by sequence-specific RNAi. The results showed that transfection with a shRNA-producing construct (shRNA-VG594) resulted in a sequence-specific knockdown of G gene mRNA in EPC cells. There were no significant differences in IFN-induced Mx1 gene expression among cells transfected with each shRNA vector including shRNA-VG594, -VG594sc (two nucleotides mismatch) and -EGFP (non-specific control), suggesting that knockdown of G gene expression was not due to an IFN response but instead by sequence-specific RNAi. Transfection of EPC cells with shRNA-VG594 conferred resistance to VHSV, and this anti-VHSV effect was not observed when using a two-nucleotide-mismatched shRNA-VG594sc or a shRNA targeting EGFP. Furthermore, shRNA-VG594 expressed in EPC cells did not confer protection against infectious hematopoietic necrosis virus (IHNV), suggesting sequence-specific RNAi-dependent suppression of viral replication.

Journal

Archives of VirologySpringer Journals

Published: Mar 1, 2011

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off