Inhibition of Vacuolar Ion Channels by Polyamines

Inhibition of Vacuolar Ion Channels by Polyamines In this work, direct effects of cytosolic polyamines on the two principle vacuolar ion channels were studied by means of patch-clamp technique. Fast and slow activating vacuolar channels were analyzed on membrane patches isolated from vacuoles of the red beet taproot. The potency of the fast and of the slow vacuolar channel blockage by polyamines decreased with a decrease of the polycation charge, spermine4+ > spermidine3+ > putrescine2+. In contrast to the inhibition of the fast vacuolar channel, the blockage of the slow vacuolar channel by polyamines displayed a pronounced voltage-dependence. Hence, in the presence of high concentration of polyamines the slow vacuolar channel was converted into a strong inward rectifier as evidenced by its unitary current-voltage characteristic. The blockage of the slow vacuolar channel by polyamines was relieved at a large depolarization, in line with the permeation of polyamines through this channel. The voltage-dependence of blockage was analyzed in terms of the conventional model, assuming a single binding site for polyamines within the channel pore. Taking advantage of a simple linear structure of naturally occurring polyamines, conclusions on a possible architecture of the slow vacuolar channel pore were drawn. The role of common polyamines in regulation of vacuolar ion transport was discussed. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

Inhibition of Vacuolar Ion Channels by Polyamines

Loading next page...
 
/lp/springer_journal/inhibition-of-vacuolar-ion-channels-by-polyamines-L1gFBataiI
Publisher
Springer-Verlag
Copyright
Copyright © Inc. by 1999 Springer-Verlag New York
Subject
Life Sciences; Biochemistry, general; Human Physiology
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s002329900477
Publisher site
See Article on Publisher Site

Abstract

In this work, direct effects of cytosolic polyamines on the two principle vacuolar ion channels were studied by means of patch-clamp technique. Fast and slow activating vacuolar channels were analyzed on membrane patches isolated from vacuoles of the red beet taproot. The potency of the fast and of the slow vacuolar channel blockage by polyamines decreased with a decrease of the polycation charge, spermine4+ > spermidine3+ > putrescine2+. In contrast to the inhibition of the fast vacuolar channel, the blockage of the slow vacuolar channel by polyamines displayed a pronounced voltage-dependence. Hence, in the presence of high concentration of polyamines the slow vacuolar channel was converted into a strong inward rectifier as evidenced by its unitary current-voltage characteristic. The blockage of the slow vacuolar channel by polyamines was relieved at a large depolarization, in line with the permeation of polyamines through this channel. The voltage-dependence of blockage was analyzed in terms of the conventional model, assuming a single binding site for polyamines within the channel pore. Taking advantage of a simple linear structure of naturally occurring polyamines, conclusions on a possible architecture of the slow vacuolar channel pore were drawn. The role of common polyamines in regulation of vacuolar ion transport was discussed.

Journal

The Journal of Membrane BiologySpringer Journals

Published: Jan 15, 1999

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off