Inhibition of Taura syndrome virus replication in Litopenaeus vannamei through silencing the LvRab7 gene using double-stranded RNA

Inhibition of Taura syndrome virus replication in Litopenaeus vannamei through silencing the... Taura syndrome virus (TSV) is a major cause of high mortality in Pacific white shrimp ( Litopenaeus vannamei, Lv) . Previously, silencing of Penaeus monodon Rab7 (PmRab7) by injecting double-stranded RNA corresponding to PmRab7 (dsRNA-PmRab7) prevented white spot syndrome virus or yellow head virus infection. Rab7 is proposed to be involved in intracellular trafficking of the viruses. This study aimed to investigate whether knockdown of Rab7 in L. vannamei by dsRNA-PmRab7 could inhibit replication of TSV. RNA interference (RNAi) technology using dsRNA targeting the LvRab7 gene was used to silence the mRNA expression of LvRab7. The silencing of the LvRab7 gene inhibited TSV replication dramatically when compared to groups receiving dsRNA-GFP or NaCl. This is the first demonstration that dsRNA targeting the endogenous shrimp gene LvRab7 strongly reduces TSV replication. It provides further evidence that LvRab7 is involved in the endosomal trafficking pathway of viruses infecting penaeid shrimp. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Archives of Virology Springer Journals

Inhibition of Taura syndrome virus replication in Litopenaeus vannamei through silencing the LvRab7 gene using double-stranded RNA

Loading next page...
 
/lp/springer_journal/inhibition-of-taura-syndrome-virus-replication-in-litopenaeus-vannamei-o9rZwwThgT
Publisher
Springer Vienna
Copyright
Copyright © 2011 by Springer-Verlag
Subject
Biomedicine; Medical Microbiology ; Infectious Diseases; Virology
ISSN
0304-8608
eISSN
1432-8798
D.O.I.
10.1007/s00705-011-0952-9
Publisher site
See Article on Publisher Site

Abstract

Taura syndrome virus (TSV) is a major cause of high mortality in Pacific white shrimp ( Litopenaeus vannamei, Lv) . Previously, silencing of Penaeus monodon Rab7 (PmRab7) by injecting double-stranded RNA corresponding to PmRab7 (dsRNA-PmRab7) prevented white spot syndrome virus or yellow head virus infection. Rab7 is proposed to be involved in intracellular trafficking of the viruses. This study aimed to investigate whether knockdown of Rab7 in L. vannamei by dsRNA-PmRab7 could inhibit replication of TSV. RNA interference (RNAi) technology using dsRNA targeting the LvRab7 gene was used to silence the mRNA expression of LvRab7. The silencing of the LvRab7 gene inhibited TSV replication dramatically when compared to groups receiving dsRNA-GFP or NaCl. This is the first demonstration that dsRNA targeting the endogenous shrimp gene LvRab7 strongly reduces TSV replication. It provides further evidence that LvRab7 is involved in the endosomal trafficking pathway of viruses infecting penaeid shrimp.

Journal

Archives of VirologySpringer Journals

Published: Jul 1, 2011

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off