Inhibition of Penaeus monodon densovirus replication in shrimp by double-stranded RNA

Inhibition of Penaeus monodon densovirus replication in shrimp by double-stranded RNA Stunted shrimp caused by Penaeus monodon densovirus ( Pm DNV) infection is one of the main problems leading to a significant economic loss in Thailand. To control this pandemic disease, a double-stranded-RNA-mediated virus-specific gene silencing approach was applied to inhibit viral replication. In this study, two dsRNAs corresponding to the non-structural protein (ns1) and the structural protein (vp) genes of Pm DNV were synthesized and introduced into shrimp haemolymph prior to viral challenge. After allowing viral replication for two weeks, the suppression effect by each dsRNA was evaluated by semi-quantitative PCR and compared with the control. A reduction of Pm DNV in shrimp treated with each dsRNA was observed. In contrast, a high level of viral infection was detected in the control group (NaCl). Based on a limited sample number, we reached the tentative conclusion that virus-specific dsRNA can inhibit Pm DNV replication, in which the dsRNA-ns1was more effective than the dsRNA-vp. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Archives of Virology Springer Journals

Inhibition of Penaeus monodon densovirus replication in shrimp by double-stranded RNA

Loading next page...
 
/lp/springer_journal/inhibition-of-penaeus-monodon-densovirus-replication-in-shrimp-by-SdUzWtN1TI
Publisher
Springer Vienna
Copyright
Copyright © 2010 by Springer-Verlag
Subject
Biomedicine; Infectious Diseases; Medical Microbiology ; Virology
ISSN
0304-8608
eISSN
1432-8798
D.O.I.
10.1007/s00705-010-0649-5
Publisher site
See Article on Publisher Site

Abstract

Stunted shrimp caused by Penaeus monodon densovirus ( Pm DNV) infection is one of the main problems leading to a significant economic loss in Thailand. To control this pandemic disease, a double-stranded-RNA-mediated virus-specific gene silencing approach was applied to inhibit viral replication. In this study, two dsRNAs corresponding to the non-structural protein (ns1) and the structural protein (vp) genes of Pm DNV were synthesized and introduced into shrimp haemolymph prior to viral challenge. After allowing viral replication for two weeks, the suppression effect by each dsRNA was evaluated by semi-quantitative PCR and compared with the control. A reduction of Pm DNV in shrimp treated with each dsRNA was observed. In contrast, a high level of viral infection was detected in the control group (NaCl). Based on a limited sample number, we reached the tentative conclusion that virus-specific dsRNA can inhibit Pm DNV replication, in which the dsRNA-ns1was more effective than the dsRNA-vp.

Journal

Archives of VirologySpringer Journals

Published: Jun 1, 2010

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off