Inhibition of influenza viral neuraminidase activity by collectins

Inhibition of influenza viral neuraminidase activity by collectins The collectins, lung surfactant proteins A and D (SP-A and SP-D), contribute to innate host defense against influenza A virus (IAV) in vivo. Although collectins bind to the viral hemagglutinin (HA) and inhibit early stages of viral infection in vitro, they also bind to the neuraminidase (NA) and inhibit NA activity. We used a variety of NA functional assays, viral strains and recombinant (mutant or wild type) collectins to characterize the mechanism of NA inhibition. NA inhibition by SP-D correlates with binding of its carbohydrate recognition domain (CRD) to oligomannose oligosaccharides on the viral hemagglutinin (HA). The effects of SP-D are additive with oseltamivir, consistent with differences in mechanism of action. NA inhibition was observed using fetuin or MDCK cells as a substrate, but not in assays using a soluble sialic acid analogue. Collectin multimerization and CRD binding properties are key determinants for NA inhibition. SP-D had greater NA inhibitory activity than mannose-binding lectin, which in turn had greater activity than SP-A. The markedly greater NA inhibitory activity of SP-D compared to SP-A may partly account for the finding that deletion of the SP-D gene in mice has a greater effect on viral replication in vivo. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Archives of Virology Springer Journals

Inhibition of influenza viral neuraminidase activity by collectins

Loading next page...
 
/lp/springer_journal/inhibition-of-influenza-viral-neuraminidase-activity-by-collectins-t8T6kIA9Ht
Publisher
Springer Journals
Copyright
Copyright © 2007 by Springer-Verlag
Subject
Biomedicine; Virology; Medical Microbiology; Infectious Diseases
ISSN
0304-8608
eISSN
1432-8798
D.O.I.
10.1007/s00705-007-0983-4
Publisher site
See Article on Publisher Site

Abstract

The collectins, lung surfactant proteins A and D (SP-A and SP-D), contribute to innate host defense against influenza A virus (IAV) in vivo. Although collectins bind to the viral hemagglutinin (HA) and inhibit early stages of viral infection in vitro, they also bind to the neuraminidase (NA) and inhibit NA activity. We used a variety of NA functional assays, viral strains and recombinant (mutant or wild type) collectins to characterize the mechanism of NA inhibition. NA inhibition by SP-D correlates with binding of its carbohydrate recognition domain (CRD) to oligomannose oligosaccharides on the viral hemagglutinin (HA). The effects of SP-D are additive with oseltamivir, consistent with differences in mechanism of action. NA inhibition was observed using fetuin or MDCK cells as a substrate, but not in assays using a soluble sialic acid analogue. Collectin multimerization and CRD binding properties are key determinants for NA inhibition. SP-D had greater NA inhibitory activity than mannose-binding lectin, which in turn had greater activity than SP-A. The markedly greater NA inhibitory activity of SP-D compared to SP-A may partly account for the finding that deletion of the SP-D gene in mice has a greater effect on viral replication in vivo.

Journal

Archives of VirologySpringer Journals

Published: Sep 1, 2007

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off