Inhibition of influenza A virus replication by short double-stranded oligodeoxynucleotides

Inhibition of influenza A virus replication by short double-stranded oligodeoxynucleotides Influenza A virus causes prevalent respiratory tract infections in humans. Small interfering RNA (siRNA) and antisense oligonucleotides (asODNs) have been used previously for silencing the RNA genome of influenza virus. Here, we explored the use of partially double-stranded oligodeoxynucleotides (dsODNs) to suppress the production of influenza A virus in cell cultures and animal models. We were able to inhibit influenza A virus replication in cultured human lung cells as well as in the lungs of infected C57BL/6 mice by treatment with dsODN 3-h post-infection. In about 20% of the cases (15/77) the titer was reduced by 10- to 100-fold and in 10% up to 1,000-fold. The antiviral effects of dsODNs were dose-dependent, sequence-dependent and comparable to those of its antisense and siRNA analogues. Thus, dsODNs may be developed as an additional class of nucleic acids for the inhibition of influenza virus replication. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Archives of Virology Springer Journals

Inhibition of influenza A virus replication by short double-stranded oligodeoxynucleotides

Loading next page...
 
/lp/springer_journal/inhibition-of-influenza-a-virus-replication-by-short-double-stranded-EHSlqkJFH5
Publisher
Springer Journals
Copyright
Copyright © 2009 by Springer-Verlag
Subject
Biomedicine; Infectious Diseases; Medical Microbiology ; Virology
ISSN
0304-8608
eISSN
1432-8798
D.O.I.
10.1007/s00705-008-0262-z
Publisher site
See Article on Publisher Site

Abstract

Influenza A virus causes prevalent respiratory tract infections in humans. Small interfering RNA (siRNA) and antisense oligonucleotides (asODNs) have been used previously for silencing the RNA genome of influenza virus. Here, we explored the use of partially double-stranded oligodeoxynucleotides (dsODNs) to suppress the production of influenza A virus in cell cultures and animal models. We were able to inhibit influenza A virus replication in cultured human lung cells as well as in the lungs of infected C57BL/6 mice by treatment with dsODN 3-h post-infection. In about 20% of the cases (15/77) the titer was reduced by 10- to 100-fold and in 10% up to 1,000-fold. The antiviral effects of dsODNs were dose-dependent, sequence-dependent and comparable to those of its antisense and siRNA analogues. Thus, dsODNs may be developed as an additional class of nucleic acids for the inhibition of influenza virus replication.

Journal

Archives of VirologySpringer Journals

Published: Jan 1, 2009

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off