Inhibition of H5N1 highly pathogenic influenza virus by suppressing a specific sialyltransferase

Inhibition of H5N1 highly pathogenic influenza virus by suppressing a specific sialyltransferase Avian influenza viruses preferentially use α2,3-linked sialic acid as a receptor for binding and entry into target cells. The sialic acid is the terminal residue of various types of glycan. There are two major types of α2,3-linked sialic acid differing in the penultimate bond: Neu5Acα2-3Galβ1-3GalNAc and Neu5Acα2-3Galβ1-4GlcNAc. In the human airway, while Neu5Acα2-3Galβ1-3GalNAc is present only in alveolar epithelial cells, the Neu5Acα2-3Galβ1-4GlcNAc is expressed in both the upper and lower airway. Previous data showed preferential binding of hemagglutinin from H5N1 highly pathogenic influenza virus to Neu5Acα2-3Galβ1-4GlcNAc. We further show here that suppression of this sialic acid by siRNA against a sialyltransferase, ST3GAL4 , can inhibit H5N1 avian influenza virus infection and that this gene is abundantly expressed in human pharynx, trachea and bronchus. These data suggest that the ST3GAL4 gene is responsible for biosynthesis of the viral receptor and may play a crucial role in infection of H5N1 avian influenza virus in humans. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Archives of Virology Springer Journals

Inhibition of H5N1 highly pathogenic influenza virus by suppressing a specific sialyltransferase

Loading next page...
 
/lp/springer_journal/inhibition-of-h5n1-highly-pathogenic-influenza-virus-by-suppressing-a-0c8q04sLpz
Publisher
Springer Vienna
Copyright
Copyright © 2010 by Springer-Verlag
Subject
Biomedicine; Infectious Diseases; Medical Microbiology ; Virology
ISSN
0304-8608
eISSN
1432-8798
D.O.I.
10.1007/s00705-010-0658-4
Publisher site
See Article on Publisher Site

Abstract

Avian influenza viruses preferentially use α2,3-linked sialic acid as a receptor for binding and entry into target cells. The sialic acid is the terminal residue of various types of glycan. There are two major types of α2,3-linked sialic acid differing in the penultimate bond: Neu5Acα2-3Galβ1-3GalNAc and Neu5Acα2-3Galβ1-4GlcNAc. In the human airway, while Neu5Acα2-3Galβ1-3GalNAc is present only in alveolar epithelial cells, the Neu5Acα2-3Galβ1-4GlcNAc is expressed in both the upper and lower airway. Previous data showed preferential binding of hemagglutinin from H5N1 highly pathogenic influenza virus to Neu5Acα2-3Galβ1-4GlcNAc. We further show here that suppression of this sialic acid by siRNA against a sialyltransferase, ST3GAL4 , can inhibit H5N1 avian influenza virus infection and that this gene is abundantly expressed in human pharynx, trachea and bronchus. These data suggest that the ST3GAL4 gene is responsible for biosynthesis of the viral receptor and may play a crucial role in infection of H5N1 avian influenza virus in humans.

Journal

Archives of VirologySpringer Journals

Published: Jun 1, 2010

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off