Inhibition of foot and mouth disease virus (FMDV) uncoating by a plant-derived peptide isolated from Melia azedarach L leaves

Inhibition of foot and mouth disease virus (FMDV) uncoating by a plant-derived peptide isolated... Meliacine (MA), a peptide isolated from leaves of the high plant Melia azedarach L inhibited the multiplication of foot and mouth disease virus (FMDV) in BHK-21 cells. In this report, we establish that the MA-inhibitable process takes place within the first hour of the viral reproductive cycle. MA had no virucidal effect and did not affect adsorption and penetration of the virus in cells. In experiments with neutral red-labeled virus, it was found that MA significantly suppressed the development of photoresistance of the virus in infected cells. In untreated cultures nearly all virus which adsorbed to cells was uncoated within 1 h at 37 °C, whereas in treated cultures, even after 3 h only 3% of the virus was uncoated. Labeling of BHK-21 cells with acridine orange showed that MA affects the pH of intracellular acidic vesicles. Therefore, it is concluded that MA prevents the process of uncoating of FMDV in BHK-21 cells by inhibiting vacuolar acidification. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Archives of Virology Springer Journals

Inhibition of foot and mouth disease virus (FMDV) uncoating by a plant-derived peptide isolated from Melia azedarach L leaves

Loading next page...
 
/lp/springer_journal/inhibition-of-foot-and-mouth-disease-virus-fmdv-uncoating-by-a-plant-9vYE56okZ0
Publisher
Springer-Verlag
Copyright
Copyright © Wien by 1998 Springer-Verlag/
Subject
Legacy
ISSN
0304-8608
eISSN
1432-8798
D.O.I.
10.1007/s007050050314
Publisher site
See Article on Publisher Site

Abstract

Meliacine (MA), a peptide isolated from leaves of the high plant Melia azedarach L inhibited the multiplication of foot and mouth disease virus (FMDV) in BHK-21 cells. In this report, we establish that the MA-inhibitable process takes place within the first hour of the viral reproductive cycle. MA had no virucidal effect and did not affect adsorption and penetration of the virus in cells. In experiments with neutral red-labeled virus, it was found that MA significantly suppressed the development of photoresistance of the virus in infected cells. In untreated cultures nearly all virus which adsorbed to cells was uncoated within 1 h at 37 °C, whereas in treated cultures, even after 3 h only 3% of the virus was uncoated. Labeling of BHK-21 cells with acridine orange showed that MA affects the pH of intracellular acidic vesicles. Therefore, it is concluded that MA prevents the process of uncoating of FMDV in BHK-21 cells by inhibiting vacuolar acidification.

Journal

Archives of VirologySpringer Journals

Published: Mar 1, 1998

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off