Inhibition of ClC-2 Chloride Channels by a Peptide Component or Components of Scorpion Venom

Inhibition of ClC-2 Chloride Channels by a Peptide Component or Components of Scorpion Venom ClC chloride channels play essential roles in membrane excitability and maintenance of osmotic balance. Despite the recent crystallization of two bacterial ClC-like proteins, the gating mechanism for these channels remains unclear. In this study we tested scorpion venom for the presence of novel peptide inhibitors of ClC channels, which might be useful tools for dissecting the mechanisms underlying ClC channel gating. Recently, it has been shown that a peptide component of venom from the scorpion L. quinquestriatus hebraeus inhibits the CFTR chloride channel from the intracellular side. Using two-electrode voltage clamp we studied the effect of scorpion venom on ClC-0, -1, and -2, and found both dose- and voltage-dependent inhibition only of ClC-2. Comparison of voltage-dependence of inhibition by venom to that of known pore blockers revealed opposite voltage dependencies, suggesting different mechanisms of inhibition. Kinetic data show that venom induced slower activation kinetics compared to pre-venom records, suggesting that the active component(s) of venom may function as a gating modifier at ClC-2. Trypsinization abolished the inhibitory activity of venom, suggesting that the component(s) of scorpion venom that inhibits ClC-2 is a peptide. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

Inhibition of ClC-2 Chloride Channels by a Peptide Component or Components of Scorpion Venom

Loading next page...
 
/lp/springer_journal/inhibition-of-clc-2-chloride-channels-by-a-peptide-component-or-BtoDJhnrCd
Publisher
Springer-Verlag
Copyright
Copyright © 2006 by Springer Science+Business Media, Inc.
Subject
Life Sciences; Human Physiology; Biochemistry, general
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s00232-005-0818-8
Publisher site
See Article on Publisher Site

Abstract

ClC chloride channels play essential roles in membrane excitability and maintenance of osmotic balance. Despite the recent crystallization of two bacterial ClC-like proteins, the gating mechanism for these channels remains unclear. In this study we tested scorpion venom for the presence of novel peptide inhibitors of ClC channels, which might be useful tools for dissecting the mechanisms underlying ClC channel gating. Recently, it has been shown that a peptide component of venom from the scorpion L. quinquestriatus hebraeus inhibits the CFTR chloride channel from the intracellular side. Using two-electrode voltage clamp we studied the effect of scorpion venom on ClC-0, -1, and -2, and found both dose- and voltage-dependent inhibition only of ClC-2. Comparison of voltage-dependence of inhibition by venom to that of known pore blockers revealed opposite voltage dependencies, suggesting different mechanisms of inhibition. Kinetic data show that venom induced slower activation kinetics compared to pre-venom records, suggesting that the active component(s) of venom may function as a gating modifier at ClC-2. Trypsinization abolished the inhibitory activity of venom, suggesting that the component(s) of scorpion venom that inhibits ClC-2 is a peptide.

Journal

The Journal of Membrane BiologySpringer Journals

Published: Jan 1, 2005

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off