Inhibiting effects of benzamide derivatives on the corrosion of mild steel in hydrochloric acid solution

Inhibiting effects of benzamide derivatives on the corrosion of mild steel in hydrochloric acid... The inhibition effect of new heterocyclic compounds, namely N-(cyanomethyl)benzamide (BENZA) and N-[(1H-tetrazol-5-yl)methyl]benzamide (BENZA-TET), on mild steel corrosion 1 M HCl was investigated using electrochemical measurements. The results indicated that the inhibition efficiency depends on concentration, immersion time and temperature. The BENZA is a better inhibitor than BENZA-TET. Polarization measurements showed that the inhibitor BENZA-TET is a cathodic type, but BENZA acts as a mixed type inhibitor. In addition, the changes in impedance parameters indicated that these compounds adsorbed on the metal surface leading to the formation of a protective film. Adsorption of benzamide derivatives on the mild steel surface was investigated to consider basic information on the interaction between the inhibitors and the metal surface. It was found to obey the Langmuir adsorption isotherm. From the temperature dependence, the activation energy in the presence of (BENZA) was found to be inferior to that in uninhibited medium. In order to explain why BENZA is the most efficient inhibitor, quantum chemical calculations were applied. The relationships between quantum chemical parameters and corrosion inhibition efficiency have been discussed to see if there is any correlation between them. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

Inhibiting effects of benzamide derivatives on the corrosion of mild steel in hydrochloric acid solution

Loading next page...
 
/lp/springer_journal/inhibiting-effects-of-benzamide-derivatives-on-the-corrosion-of-mild-zf0Eg3LP3n
Publisher
Springer Journals
Copyright
Copyright © 2012 by Springer Science+Business Media B.V.
Subject
Chemistry; Catalysis; Physical Chemistry; Inorganic Chemistry
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1007/s11164-012-0768-6
Publisher site
See Article on Publisher Site

Abstract

The inhibition effect of new heterocyclic compounds, namely N-(cyanomethyl)benzamide (BENZA) and N-[(1H-tetrazol-5-yl)methyl]benzamide (BENZA-TET), on mild steel corrosion 1 M HCl was investigated using electrochemical measurements. The results indicated that the inhibition efficiency depends on concentration, immersion time and temperature. The BENZA is a better inhibitor than BENZA-TET. Polarization measurements showed that the inhibitor BENZA-TET is a cathodic type, but BENZA acts as a mixed type inhibitor. In addition, the changes in impedance parameters indicated that these compounds adsorbed on the metal surface leading to the formation of a protective film. Adsorption of benzamide derivatives on the mild steel surface was investigated to consider basic information on the interaction between the inhibitors and the metal surface. It was found to obey the Langmuir adsorption isotherm. From the temperature dependence, the activation energy in the presence of (BENZA) was found to be inferior to that in uninhibited medium. In order to explain why BENZA is the most efficient inhibitor, quantum chemical calculations were applied. The relationships between quantum chemical parameters and corrosion inhibition efficiency have been discussed to see if there is any correlation between them.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Aug 31, 2012

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off