Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Inhibiting effects of benzamide derivatives on the corrosion of mild steel in hydrochloric acid solution

Inhibiting effects of benzamide derivatives on the corrosion of mild steel in hydrochloric acid... The inhibition effect of new heterocyclic compounds, namely N-(cyanomethyl)benzamide (BENZA) and N-[(1H-tetrazol-5-yl)methyl]benzamide (BENZA-TET), on mild steel corrosion 1 M HCl was investigated using electrochemical measurements. The results indicated that the inhibition efficiency depends on concentration, immersion time and temperature. The BENZA is a better inhibitor than BENZA-TET. Polarization measurements showed that the inhibitor BENZA-TET is a cathodic type, but BENZA acts as a mixed type inhibitor. In addition, the changes in impedance parameters indicated that these compounds adsorbed on the metal surface leading to the formation of a protective film. Adsorption of benzamide derivatives on the mild steel surface was investigated to consider basic information on the interaction between the inhibitors and the metal surface. It was found to obey the Langmuir adsorption isotherm. From the temperature dependence, the activation energy in the presence of (BENZA) was found to be inferior to that in uninhibited medium. In order to explain why BENZA is the most efficient inhibitor, quantum chemical calculations were applied. The relationships between quantum chemical parameters and corrosion inhibition efficiency have been discussed to see if there is any correlation between them. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

Inhibiting effects of benzamide derivatives on the corrosion of mild steel in hydrochloric acid solution

Loading next page...
 
/lp/springer_journal/inhibiting-effects-of-benzamide-derivatives-on-the-corrosion-of-mild-zf0Eg3LP3n

References (42)

Publisher
Springer Journals
Copyright
Copyright © 2012 by Springer Science+Business Media B.V.
Subject
Chemistry; Catalysis; Physical Chemistry; Inorganic Chemistry
ISSN
0922-6168
eISSN
1568-5675
DOI
10.1007/s11164-012-0768-6
Publisher site
See Article on Publisher Site

Abstract

The inhibition effect of new heterocyclic compounds, namely N-(cyanomethyl)benzamide (BENZA) and N-[(1H-tetrazol-5-yl)methyl]benzamide (BENZA-TET), on mild steel corrosion 1 M HCl was investigated using electrochemical measurements. The results indicated that the inhibition efficiency depends on concentration, immersion time and temperature. The BENZA is a better inhibitor than BENZA-TET. Polarization measurements showed that the inhibitor BENZA-TET is a cathodic type, but BENZA acts as a mixed type inhibitor. In addition, the changes in impedance parameters indicated that these compounds adsorbed on the metal surface leading to the formation of a protective film. Adsorption of benzamide derivatives on the mild steel surface was investigated to consider basic information on the interaction between the inhibitors and the metal surface. It was found to obey the Langmuir adsorption isotherm. From the temperature dependence, the activation energy in the presence of (BENZA) was found to be inferior to that in uninhibited medium. In order to explain why BENZA is the most efficient inhibitor, quantum chemical calculations were applied. The relationships between quantum chemical parameters and corrosion inhibition efficiency have been discussed to see if there is any correlation between them.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Aug 31, 2012

There are no references for this article.