Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Inheritance of reversions to male fertility in male-sterile sorghum hybrids with 9E male-sterile cytoplasm induced by environmental conditions

Inheritance of reversions to male fertility in male-sterile sorghum hybrids with 9E male-sterile... Heritable phenotypic alterations occurring during plant ontogenesis under the influence of environmental factors are among the most intriguing genetic phenomena. It was found that male-sterile sorghum hybrids in the 9E cytoplasm from the F1 and F2 generations, which were obtained by crossing CMS lines with different fertile lines grown in field conditions, when they have been transferred to greenhouse produce fertile tillers. Lines created by the self-pollination of revertant tillers exhibit complete male fertility upon cultivation under various environments (in the field, “dry plot,” “irrigated plot”). In a number of test-crosses of revertants to CMS lines in the 9E cytoplasm, restoration of male fertility in F1 hybrids was found, indicating that revertants possess functional fertility-restoring genes. A high positive correlation was found between the fertility level of the test-cross hybrids and the hydrothermal coefficient (the ratio of the sum of precipitation to the sum of temperatures) during the booting stage and pollen maturation (r = 0.75…0.91; P < 0.01), suggesting that a high level of plant water availability is needed for the expression of fertility-restoring genes of revertants. These data show that the fertility-restoring genes for the 9E cytoplasm are dominant in conditions of high water availability and recessive in drought conditions; reversions to male fertility are due to up-regulation of fertility-restoring genes by a high level of water availability. Comparative MSAP-analysis of DNA of malesterile and male-fertile test-cross hybrids using HpaII/MspI restrictases and primers to polygalacturonase gene ADPG2, which is required for cell separation during reproductive development, and gene MYB46, the transcription factor regulating secondary wall biosynthesis, revealed differences in the number and the length of amplified fragments. Changes in the methylation of these genes in conditions of drought stress are apparently the reason for male sterility of sorghum hybrids in the 9E cytoplasm. These data demonstrate that methylation of nuclear genes in sterility-inducing cytoplasm may be one of mechanisms causing the CMS phenomenon. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Genetics Springer Journals

Inheritance of reversions to male fertility in male-sterile sorghum hybrids with 9E male-sterile cytoplasm induced by environmental conditions

Loading next page...
1
 
/lp/springer_journal/inheritance-of-reversions-to-male-fertility-in-male-sterile-sorghum-QQrw0542Sz

References (34)

Publisher
Springer Journals
Copyright
Copyright © 2015 by Pleiades Publishing, Inc.
Subject
Biomedicine; Human Genetics; Animal Genetics and Genomics; Microbial Genetics and Genomics
ISSN
1022-7954
eISSN
1608-3369
DOI
10.1134/S1022795415030035
Publisher site
See Article on Publisher Site

Abstract

Heritable phenotypic alterations occurring during plant ontogenesis under the influence of environmental factors are among the most intriguing genetic phenomena. It was found that male-sterile sorghum hybrids in the 9E cytoplasm from the F1 and F2 generations, which were obtained by crossing CMS lines with different fertile lines grown in field conditions, when they have been transferred to greenhouse produce fertile tillers. Lines created by the self-pollination of revertant tillers exhibit complete male fertility upon cultivation under various environments (in the field, “dry plot,” “irrigated plot”). In a number of test-crosses of revertants to CMS lines in the 9E cytoplasm, restoration of male fertility in F1 hybrids was found, indicating that revertants possess functional fertility-restoring genes. A high positive correlation was found between the fertility level of the test-cross hybrids and the hydrothermal coefficient (the ratio of the sum of precipitation to the sum of temperatures) during the booting stage and pollen maturation (r = 0.75…0.91; P < 0.01), suggesting that a high level of plant water availability is needed for the expression of fertility-restoring genes of revertants. These data show that the fertility-restoring genes for the 9E cytoplasm are dominant in conditions of high water availability and recessive in drought conditions; reversions to male fertility are due to up-regulation of fertility-restoring genes by a high level of water availability. Comparative MSAP-analysis of DNA of malesterile and male-fertile test-cross hybrids using HpaII/MspI restrictases and primers to polygalacturonase gene ADPG2, which is required for cell separation during reproductive development, and gene MYB46, the transcription factor regulating secondary wall biosynthesis, revealed differences in the number and the length of amplified fragments. Changes in the methylation of these genes in conditions of drought stress are apparently the reason for male sterility of sorghum hybrids in the 9E cytoplasm. These data demonstrate that methylation of nuclear genes in sterility-inducing cytoplasm may be one of mechanisms causing the CMS phenomenon.

Journal

Russian Journal of GeneticsSpringer Journals

Published: Mar 22, 2015

There are no references for this article.