Inheritance of apple proliferation resistance by parental lines of apomictic Malus sieboldii as donor of resistance in rootstock breeding

Inheritance of apple proliferation resistance by parental lines of apomictic Malus sieboldii as... To study inheritance of Malus sieboldii-derived apple proliferation resistance, 14 cross combinations were performed with the tetraploid apomictic M. sieboldii and first and second generation parental lines as donor of resistance and Malus x domestica scion cultivars and apple rootstocks as donor of pomological traits. In the progeny examined mainly three classes were present consisting of mother-like plants with the allele composition of the maternal apomict (ML), hybrids based on fertilization of an unreduced egg cell (hybrid I), and fully recombinant plants (hybrid II). Two-year screening of inoculated plants in the nursery revealed that progeny classes ML and H I responded similarly to infection and that about half of the progeny showed satisfactory resistance. No appropriate resistance was identified in progeny class H II. This might be due to the fact that in fully recombinant offspring M. sieboldii haplotypes have been reduced from 4n to 1-2n or were entirely lost. Following nursery-growing, promising trees were evaluated for six more years in the orchard. Nearly all of them showed satisfactory resistance but were mostly less productive and more vigorous than trees on clonal standard rootstock M9. However, mainly among the offspring of progeny 4608 × M9, resistant genotypes were identified showing pomological properties similar to M9. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png European Journal of Plant Pathology Springer Journals

Inheritance of apple proliferation resistance by parental lines of apomictic Malus sieboldii as donor of resistance in rootstock breeding

Loading next page...
 
/lp/springer_journal/inheritance-of-apple-proliferation-resistance-by-parental-lines-of-tNlHWJlKMO
Publisher
Springer Journals
Copyright
Copyright © 2018 by Koninklijke Nederlandse Planteziektenkundige Vereniging
Subject
Life Sciences; Plant Pathology; Plant Sciences; Ecology; Agriculture; Life Sciences, general
ISSN
0929-1873
eISSN
1573-8469
D.O.I.
10.1007/s10658-017-1412-5
Publisher site
See Article on Publisher Site

Abstract

To study inheritance of Malus sieboldii-derived apple proliferation resistance, 14 cross combinations were performed with the tetraploid apomictic M. sieboldii and first and second generation parental lines as donor of resistance and Malus x domestica scion cultivars and apple rootstocks as donor of pomological traits. In the progeny examined mainly three classes were present consisting of mother-like plants with the allele composition of the maternal apomict (ML), hybrids based on fertilization of an unreduced egg cell (hybrid I), and fully recombinant plants (hybrid II). Two-year screening of inoculated plants in the nursery revealed that progeny classes ML and H I responded similarly to infection and that about half of the progeny showed satisfactory resistance. No appropriate resistance was identified in progeny class H II. This might be due to the fact that in fully recombinant offspring M. sieboldii haplotypes have been reduced from 4n to 1-2n or were entirely lost. Following nursery-growing, promising trees were evaluated for six more years in the orchard. Nearly all of them showed satisfactory resistance but were mostly less productive and more vigorous than trees on clonal standard rootstock M9. However, mainly among the offspring of progeny 4608 × M9, resistant genotypes were identified showing pomological properties similar to M9.

Journal

European Journal of Plant PathologySpringer Journals

Published: Jan 8, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off