Infrared micro-particle image velocimetry in silicon-based microdevices

Infrared micro-particle image velocimetry in silicon-based microdevices A non-intrusive diagnostic technique, infrared micro-particle image velocimetry (IR-PIV), is developed for measuring flow fields within micro-electromechanical system (MEMS) devices with micron-scale resolution. This technique capitalizes on the transparency of silicon in the infrared region, and overcomes the limitation posed by the lack of optical access with visible light to sub-surface flow in silicon-based microstructures. Experiments with laminar flow of water in a circular microcapillary tube of hydraulic diameter 255 μm demonstrate the efficacy of this technique. The experimental measurements agree very well with velocity profiles predicted from laminar theory. Cross-correlation and auto-correlation algorithms are employed to measure very low and moderate to high velocities, respectively; the former approach is suitable for biomedical applications while the latter would be needed for measurements in electronics cooling. The results indicate that the IR-PIV technique effectively extends the application of regular micro-PIV techniques, and has great potential for flow measurements in silicon-based microdevices. Experiments in Fluids Springer Journals

Infrared micro-particle image velocimetry in silicon-based microdevices

Loading next page...
Copyright © 2005 by Springer-Verlag
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial