Influence of tissue nitration on tissue damage with thermal injury

Influence of tissue nitration on tissue damage with thermal injury A gas mediator, nitric oxide, is converted into peroxynitrite in the presence of superoxide anion. Peroxynitrite is a potent oxidant, which injures various tissues and organs by nitration of tyrosine residue in protein and enhances the inflammatory response in the prolonged phase. In this study, the authors investigated the relationship between peroxynitrite-mediated tissue nitration and tissue damage with thermal injury using an experimental burn model. The content of nitrotyrosine in the burned tissue significantly increased 1 to 6 h after injury. The nitrotyrosine content in the burned ear significantly decreased with 100 mg/kg of LNAME administration. Vascular hyperpermeability was also significantly suppressed in the iNOS antibody immunoneutralized mice 6 h after injury. There was a positive correlation between the severity of tissue damage, an indicator of which is the increase in the weight of the burned ear along with the development of edema after injury, and the concentration of nitrotyrosine in the wound tissues. Nitrotyrosine-like immune reactants were also diffusely detected in the burned region and the surrounding areas. These results indicate that peroxynitrite is produced in the surrounding burned region and a reaction of nitration of tissue tyrosine is involved with tissue damage at the burn wound. Therefore, to prevent the systemic vascular hyperpermeability and tissue damage in a large area burn or severe burn patients, the administration of NOS inhibitors or radical erasers may be easy to manage generally by inhibition of peroxynitrite formation. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png European Journal of Plastic Surgery Springer Journals

Influence of tissue nitration on tissue damage with thermal injury

Loading next page...
 
/lp/springer_journal/influence-of-tissue-nitration-on-tissue-damage-with-thermal-injury-fTIQWiXUWA
Publisher
Springer Journals
Copyright
Copyright © 2007 by Springer-Verlag
Subject
Medicine & Public Health; Plastic Surgery
ISSN
0930-343X
eISSN
1435-0130
D.O.I.
10.1007/s00238-007-0167-1
Publisher site
See Article on Publisher Site

Abstract

A gas mediator, nitric oxide, is converted into peroxynitrite in the presence of superoxide anion. Peroxynitrite is a potent oxidant, which injures various tissues and organs by nitration of tyrosine residue in protein and enhances the inflammatory response in the prolonged phase. In this study, the authors investigated the relationship between peroxynitrite-mediated tissue nitration and tissue damage with thermal injury using an experimental burn model. The content of nitrotyrosine in the burned tissue significantly increased 1 to 6 h after injury. The nitrotyrosine content in the burned ear significantly decreased with 100 mg/kg of LNAME administration. Vascular hyperpermeability was also significantly suppressed in the iNOS antibody immunoneutralized mice 6 h after injury. There was a positive correlation between the severity of tissue damage, an indicator of which is the increase in the weight of the burned ear along with the development of edema after injury, and the concentration of nitrotyrosine in the wound tissues. Nitrotyrosine-like immune reactants were also diffusely detected in the burned region and the surrounding areas. These results indicate that peroxynitrite is produced in the surrounding burned region and a reaction of nitration of tissue tyrosine is involved with tissue damage at the burn wound. Therefore, to prevent the systemic vascular hyperpermeability and tissue damage in a large area burn or severe burn patients, the administration of NOS inhibitors or radical erasers may be easy to manage generally by inhibition of peroxynitrite formation.

Journal

European Journal of Plastic SurgerySpringer Journals

Published: Dec 1, 2007

References

  • Increased nitric oxide in nasal mucosa-indices for severe perennial nasal allergy
    Sato, M; Fukuyama, N; Sakai, M; Nakazawa, H

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off