Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Influence of Thermoperiod on Growth and Development in Cucumber

Influence of Thermoperiod on Growth and Development in Cucumber We studied the influence of gradient temperature regimes on various parameters of the formation of shoots and roots of cucumber plants, such as rate of leaf appearance, rate of growth, duration of growth and length of leaves, and the rate of growth shoots organs and roots. The plants were grown under the controlled conditions: at different combinations of day and night temperature, illumination 100 W/m2, and 12 h photoperiod. The comparison of constant and fluctuating diurnal temperature regimes has shown that in the optimal area for all studied indices, the highest values were recorded at the constant daily temperature (25°C for all growth indices of shoots and 20°C for growth of roots), while all gradient regimes either did not affect, or exerted inhibitory effects on the plant. Outside the optimum area, the effects of gradient temperatures differed. The main acting fluctuating temperatures, that exerted stimulating effects, combined low hardening (15°C) and optimal temperatures (25°C), which was earlier described for animals. The 15/35 and 35/15°C combinations were unambiguously inhibitory, since both temperatures are hardening for the cucumber. A lesser stimulating effect of gradient temperatures on the developmental rate in a plant, as compared to poikilothermic animals, could be due to a greater autonomy of plant ontogenesis because of autotrophy and, correspondingly, a greater degree of homeostasis. The mechanisms accounting for the responses to temperature gradients are similar in different groups of ectotherms. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Developmental Biology Springer Journals

Influence of Thermoperiod on Growth and Development in Cucumber

Loading next page...
1
 
/lp/springer_journal/influence-of-thermoperiod-on-growth-and-development-in-cucumber-oJAsglXb0I

References (40)

Publisher
Springer Journals
Copyright
Copyright © 2003 by MAIK “Nauka/Interperiodica”
Subject
Life Sciences; Animal Anatomy / Morphology / Histology
ISSN
1062-3604
eISSN
1608-3326
DOI
10.1023/A:1023304614943
Publisher site
See Article on Publisher Site

Abstract

We studied the influence of gradient temperature regimes on various parameters of the formation of shoots and roots of cucumber plants, such as rate of leaf appearance, rate of growth, duration of growth and length of leaves, and the rate of growth shoots organs and roots. The plants were grown under the controlled conditions: at different combinations of day and night temperature, illumination 100 W/m2, and 12 h photoperiod. The comparison of constant and fluctuating diurnal temperature regimes has shown that in the optimal area for all studied indices, the highest values were recorded at the constant daily temperature (25°C for all growth indices of shoots and 20°C for growth of roots), while all gradient regimes either did not affect, or exerted inhibitory effects on the plant. Outside the optimum area, the effects of gradient temperatures differed. The main acting fluctuating temperatures, that exerted stimulating effects, combined low hardening (15°C) and optimal temperatures (25°C), which was earlier described for animals. The 15/35 and 35/15°C combinations were unambiguously inhibitory, since both temperatures are hardening for the cucumber. A lesser stimulating effect of gradient temperatures on the developmental rate in a plant, as compared to poikilothermic animals, could be due to a greater autonomy of plant ontogenesis because of autotrophy and, correspondingly, a greater degree of homeostasis. The mechanisms accounting for the responses to temperature gradients are similar in different groups of ectotherms.

Journal

Russian Journal of Developmental BiologySpringer Journals

Published: Oct 7, 2004

There are no references for this article.