Influence of thermal shock and environment temperature on mechanical properties of C/SiC/GH783 joint brazed with Cu-Ti+Mo

Influence of thermal shock and environment temperature on mechanical properties of C/SiC/GH783... The carbon reinforced silicon carbide ceramic matrix composites (C/SiC) were brazed to Fe-Ni-Co superalloy (GH783) with Cu-Ti + Mo solder under vacuum at 1000 °C. The influence of thermal shock (in air at 800 °C) and environment temperature on mechanical properties of the joint were investigated. The joint between C/SiC composites and GH783 was dense, crack free, and was comprised of reaction layer, stress relief layer, plastoelastic layer, and diffusion layer. Thermal shock damage and oxidative damage were both existing after the thermal shock. Therefore, the flexural strength of the joint decreased dramatically with the increase of thermal shock times. After 5, 10, and 15 times of thermal shock, the flexural strength of the joint decreased to 42.9, 22.7, and 9.7% of the initial strength, respectively. The flexural strength of the joint decreased dramatically with the increase of environment temperature because of the thermal mismatch between C/SiC and the interface reaction layer. The flexural strength of the joint at 600, 800, and 900 °C was decreased to 60, 39, and 29% of that at room temperature, respectively. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Advanced Composites and Hybrid Materials Springer Journals

Influence of thermal shock and environment temperature on mechanical properties of C/SiC/GH783 joint brazed with Cu-Ti+Mo

Loading next page...
 
/lp/springer_journal/influence-of-thermal-shock-and-environment-temperature-on-mechanical-wCqJf9IuLr
Publisher
Springer Journals
Copyright
Copyright © 2017 by Springer International Publishing AG
Subject
Materials Science; Ceramics, Glass, Composites, Natural Materials; Materials Engineering; Polymer Sciences
ISSN
2522-0128
eISSN
2522-0136
D.O.I.
10.1007/s42114-017-0010-5
Publisher site
See Article on Publisher Site

Abstract

The carbon reinforced silicon carbide ceramic matrix composites (C/SiC) were brazed to Fe-Ni-Co superalloy (GH783) with Cu-Ti + Mo solder under vacuum at 1000 °C. The influence of thermal shock (in air at 800 °C) and environment temperature on mechanical properties of the joint were investigated. The joint between C/SiC composites and GH783 was dense, crack free, and was comprised of reaction layer, stress relief layer, plastoelastic layer, and diffusion layer. Thermal shock damage and oxidative damage were both existing after the thermal shock. Therefore, the flexural strength of the joint decreased dramatically with the increase of thermal shock times. After 5, 10, and 15 times of thermal shock, the flexural strength of the joint decreased to 42.9, 22.7, and 9.7% of the initial strength, respectively. The flexural strength of the joint decreased dramatically with the increase of environment temperature because of the thermal mismatch between C/SiC and the interface reaction layer. The flexural strength of the joint at 600, 800, and 900 °C was decreased to 60, 39, and 29% of that at room temperature, respectively.

Journal

Advanced Composites and Hybrid MaterialsSpringer Journals

Published: Oct 13, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off