Influence of the yellow Locus on Sensitivity of Drosophila Germ Cells to Chemical Mutagens

Influence of the yellow Locus on Sensitivity of Drosophila Germ Cells to Chemical Mutagens The effect of theyellow (y) locus on germ cell sensitivity to the alkylating agent ethyl methanesulfonate (EMS) has been studied in Drosophila. Since DNA repair is one of the most important factors that control cell sensitivity to mutagens, the approaches used in our experiments aimed at evaluating the relationship between germ-cell mutability and activity of DNA repair. Germ-cell mutability and repair activity were assessed using several parameters, the most important of which was the frequency of the sex-linked recessive lethals (RSLLM). In one series of experiments, the adult males of various genotypes (Berlin K; y; y ct v; and y mei-9 a) were treated by mutagenic agents and then crossed to Bascfemales. Comparative analysis of germ-cell mutability as dependent on genotype and the stage of spermatogenesis showed that theyellow mutation significantly enhanced the premeiotic cell sensitivity to EMS, presumably, due to the effect on DNA repair. In the second series of experiments, the effect of the maternal DNA repair was studied and, accordingly, mutagen-treated Bascmales were crossed to females of various genotypes including y and y mei-9 a ones. The crosses involving y females yielded F1 progeny with high spontaneous lethality, whereas in F2, the frequency of spontaneous mutations was twice higher. The germ cell response to EMS depended also on female genotype: the effect of yellow resulted in increased embryonic and postembryonic lethality, whereas the RSLLM frequency decreased insignificantly. The latter result may be explained by elimination of some mutations due to 50% mortality of the progeny F1. The results obtained using the above two approaches suggest that theyellow locus has a pleiotropic effect on the DNA repair systems in both males and females of Drosophila. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Genetics Springer Journals

Influence of the yellow Locus on Sensitivity of Drosophila Germ Cells to Chemical Mutagens

Loading next page...
 
/lp/springer_journal/influence-of-the-yellow-locus-on-sensitivity-of-drosophila-germ-cells-0MeuQWI760
Publisher
Kluwer Academic Publishers-Plenum Publishers
Copyright
Copyright © 2003 by MAIK “Nauka/Interperiodica”
Subject
Biomedicine; Human Genetics
ISSN
1022-7954
eISSN
1608-3369
D.O.I.
10.1023/B:RUGE.0000009152.62532.84
Publisher site
See Article on Publisher Site

Abstract

The effect of theyellow (y) locus on germ cell sensitivity to the alkylating agent ethyl methanesulfonate (EMS) has been studied in Drosophila. Since DNA repair is one of the most important factors that control cell sensitivity to mutagens, the approaches used in our experiments aimed at evaluating the relationship between germ-cell mutability and activity of DNA repair. Germ-cell mutability and repair activity were assessed using several parameters, the most important of which was the frequency of the sex-linked recessive lethals (RSLLM). In one series of experiments, the adult males of various genotypes (Berlin K; y; y ct v; and y mei-9 a) were treated by mutagenic agents and then crossed to Bascfemales. Comparative analysis of germ-cell mutability as dependent on genotype and the stage of spermatogenesis showed that theyellow mutation significantly enhanced the premeiotic cell sensitivity to EMS, presumably, due to the effect on DNA repair. In the second series of experiments, the effect of the maternal DNA repair was studied and, accordingly, mutagen-treated Bascmales were crossed to females of various genotypes including y and y mei-9 a ones. The crosses involving y females yielded F1 progeny with high spontaneous lethality, whereas in F2, the frequency of spontaneous mutations was twice higher. The germ cell response to EMS depended also on female genotype: the effect of yellow resulted in increased embryonic and postembryonic lethality, whereas the RSLLM frequency decreased insignificantly. The latter result may be explained by elimination of some mutations due to 50% mortality of the progeny F1. The results obtained using the above two approaches suggest that theyellow locus has a pleiotropic effect on the DNA repair systems in both males and females of Drosophila.

Journal

Russian Journal of GeneticsSpringer Journals

Published: Oct 7, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off