Influence of the Nature of the T-DNA Insertion Region on Transgene Expression in Arabidopsis thaliana

Influence of the Nature of the T-DNA Insertion Region on Transgene Expression in Arabidopsis... In the experiment reported here, effect of the nature of T-DNA integration region on the activity of the transgenes was studied by using a color marker gene in Arabidopsis thaliana. For this purpose, a pale homozygous ch-42 mutant was transformed with the wild-type copy of the gene (CH-42) using kanamycin resistance gene as a selectable marker. Two independent lines were identified in which CH-42 transgene was inactive. The T-DNA flanking sequences were recovered from these inactive and two active lines. These flanking sequences were used to examine copy number and DNA methylation of the T-DNA insertion site in active and inactive lines. Southern blots produced by using MspI/HpaII digested genomic DNA showed signs of methylation in both inactive lines. Furthermore, in one of the inactive line, the T-DNA flanking sequence probe hybridized to highly repetitive sequence. The results suggest some correlation between silencing of the transgene and methylation of its insertion region. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Genetics Springer Journals

Influence of the Nature of the T-DNA Insertion Region on Transgene Expression in Arabidopsis thaliana

Loading next page...
 
/lp/springer_journal/influence-of-the-nature-of-the-t-dna-insertion-region-on-transgene-gD2aE2sVj6
Publisher
Springer Journals
Copyright
Copyright © 2005 by MAIK "Nauka/Interperiodica"
Subject
Biomedicine; Microbial Genetics and Genomics; Animal Genetics and Genomics; Human Genetics
ISSN
1022-7954
eISSN
1608-3369
D.O.I.
10.1007/s11177-006-0002-y
Publisher site
See Article on Publisher Site

Abstract

In the experiment reported here, effect of the nature of T-DNA integration region on the activity of the transgenes was studied by using a color marker gene in Arabidopsis thaliana. For this purpose, a pale homozygous ch-42 mutant was transformed with the wild-type copy of the gene (CH-42) using kanamycin resistance gene as a selectable marker. Two independent lines were identified in which CH-42 transgene was inactive. The T-DNA flanking sequences were recovered from these inactive and two active lines. These flanking sequences were used to examine copy number and DNA methylation of the T-DNA insertion site in active and inactive lines. Southern blots produced by using MspI/HpaII digested genomic DNA showed signs of methylation in both inactive lines. Furthermore, in one of the inactive line, the T-DNA flanking sequence probe hybridized to highly repetitive sequence. The results suggest some correlation between silencing of the transgene and methylation of its insertion region.

Journal

Russian Journal of GeneticsSpringer Journals

Published: Jan 17, 2006

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off