Influence of summer conditions on surface water properties and phytoplankton productivity in embayments of the South Shetland Islands

Influence of summer conditions on surface water properties and phytoplankton productivity in... Phytoplankton productivity in glaciomarine embayments of the West Antarctic Peninsula is constrained because of extensive thermohaline variability, which is due to seasonal sea-ice and glacial melting. To determine whether or not this affects the biology of the water column, we explored the influence of surface water properties on phytoplankton productivity in four embayments of the South Shetland Islands (SSI) during late summer of 2013. We analyzed hydrographic, climatic, and pri- mary productivityon satellite data (wind velocity, sea-ice cover, and chlorophyll-a), in situ CTD measurements of physical and chemical characteristics, new estimates of net primary production (NPP), and surface water samples for chlorophyll-a, nutrients, biogenic silica, and plankton composition. Sea-ice cover at the SSI was ~ 20% during February. Long-term sat- −1 ellite wind data (2010–2015) showed that during February 2013 the average wind velocity was ~ 2 m s higher than the long-term mean with two low sea surface temperature events occurring simultaneously at all sites. The CTD profiles did not show vertical salinity changes, although salinity was highly correlated with the percentage of integrated nanoplankton Chl-a, which represented > 50% of the total integrated Chl-a in all the embayments. Phytoplankton was the major contribu- tor to the integrated carbon biomass of http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Polar Biology Springer Journals

Influence of summer conditions on surface water properties and phytoplankton productivity in embayments of the South Shetland Islands

Loading next page...
 
/lp/springer_journal/influence-of-summer-conditions-on-surface-water-properties-and-fjTGLUj1UT
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2018 by Springer-Verlag GmbH Germany, part of Springer Nature
Subject
Life Sciences; Ecology; Oceanography; Microbiology; Plant Sciences; Zoology
ISSN
0722-4060
eISSN
1432-2056
D.O.I.
10.1007/s00300-018-2338-x
Publisher site
See Article on Publisher Site

Abstract

Phytoplankton productivity in glaciomarine embayments of the West Antarctic Peninsula is constrained because of extensive thermohaline variability, which is due to seasonal sea-ice and glacial melting. To determine whether or not this affects the biology of the water column, we explored the influence of surface water properties on phytoplankton productivity in four embayments of the South Shetland Islands (SSI) during late summer of 2013. We analyzed hydrographic, climatic, and pri- mary productivityon satellite data (wind velocity, sea-ice cover, and chlorophyll-a), in situ CTD measurements of physical and chemical characteristics, new estimates of net primary production (NPP), and surface water samples for chlorophyll-a, nutrients, biogenic silica, and plankton composition. Sea-ice cover at the SSI was ~ 20% during February. Long-term sat- −1 ellite wind data (2010–2015) showed that during February 2013 the average wind velocity was ~ 2 m s higher than the long-term mean with two low sea surface temperature events occurring simultaneously at all sites. The CTD profiles did not show vertical salinity changes, although salinity was highly correlated with the percentage of integrated nanoplankton Chl-a, which represented > 50% of the total integrated Chl-a in all the embayments. Phytoplankton was the major contribu- tor to the integrated carbon biomass of

Journal

Polar BiologySpringer Journals

Published: May 30, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off