Influence of Regulatory Genes of Type 1 Human Immunodeficiency Virus on Proliferation and Differentiation of Murine Embryonic Stem Cells

Influence of Regulatory Genes of Type 1 Human Immunodeficiency Virus on Proliferation and... Spontaneous formation of embryoid bodies and subsequent differentiation of some cells into cardiomyocytes were demonstrated on murine embryonic stem cells of R1 line. The lines of embryonic stem cells were obtained that had been transfected with genetic constructs carrying expressing regulatory genes of the human immunodeficiency virus tat and nef and green protein gene (GFP). The transfection of embryonic stem cells with the gene tat stimulated their proliferative activity, while this activity decreased in the cells transfected with the gene nef. The time necessary for the formation of embryoid bodies by all lines of transfected cells was similar to that in the control cells. In the cultures of cells transfected with nef and tat, the number of embryoid bodies and the percentage of embryoid bodies with contracting cardiomyocytes were higher and lower than in the control, respectively. Thus, an inverse correlation was observed between the effects of regulatory genes of the human immunodeficiency virus on proliferation and differentiation embryonic stem cells. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Developmental Biology Springer Journals

Influence of Regulatory Genes of Type 1 Human Immunodeficiency Virus on Proliferation and Differentiation of Murine Embryonic Stem Cells

Loading next page...
 
/lp/springer_journal/influence-of-regulatory-genes-of-type-1-human-immunodeficiency-virus-i1hgbLCzZm
Publisher
Kluwer Academic Publishers-Plenum Publishers
Copyright
Copyright © 2003 by MAIK “Nauka/Interperiodica”
Subject
Life Sciences; Animal Anatomy / Morphology / Histology
ISSN
1062-3604
eISSN
1608-3326
D.O.I.
10.1023/A:1024072707194
Publisher site
See Article on Publisher Site

Abstract

Spontaneous formation of embryoid bodies and subsequent differentiation of some cells into cardiomyocytes were demonstrated on murine embryonic stem cells of R1 line. The lines of embryonic stem cells were obtained that had been transfected with genetic constructs carrying expressing regulatory genes of the human immunodeficiency virus tat and nef and green protein gene (GFP). The transfection of embryonic stem cells with the gene tat stimulated their proliferative activity, while this activity decreased in the cells transfected with the gene nef. The time necessary for the formation of embryoid bodies by all lines of transfected cells was similar to that in the control cells. In the cultures of cells transfected with nef and tat, the number of embryoid bodies and the percentage of embryoid bodies with contracting cardiomyocytes were higher and lower than in the control, respectively. Thus, an inverse correlation was observed between the effects of regulatory genes of the human immunodeficiency virus on proliferation and differentiation embryonic stem cells.

Journal

Russian Journal of Developmental BiologySpringer Journals

Published: Oct 7, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off