Influence of pressure, temperature and gas phase composition on biacetyl laser-induced fluorescence

Influence of pressure, temperature and gas phase composition on biacetyl laser-induced fluorescence The purpose of this work is to get fundamental knowledge and to understand experimentally the fluorescence phenomenon usually used in laser-based imaging diagnostics. A complete review of thermodynamic effects (pressure, temperature, oxygen and tracer concentration) on biacetyl fluorescence is presented for a wide range of temperature and pressure. Biacetyl fluorescence increases with pressure and then levels off at high pressure when the relaxation is complete. The influence of the temperature is explained by a competition between the intersystem crossing and fluorescence. The effect of oxygen fluorescence quenching is important at high pressure and is discussed. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Influence of pressure, temperature and gas phase composition on biacetyl laser-induced fluorescence

Loading next page...
 
/lp/springer_journal/influence-of-pressure-temperature-and-gas-phase-composition-on-rprcSnsfAj
Publisher
Springer Journals
Copyright
Copyright © 2005 by Springer-Verlag
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-005-0064-y
Publisher site
See Article on Publisher Site

Abstract

The purpose of this work is to get fundamental knowledge and to understand experimentally the fluorescence phenomenon usually used in laser-based imaging diagnostics. A complete review of thermodynamic effects (pressure, temperature, oxygen and tracer concentration) on biacetyl fluorescence is presented for a wide range of temperature and pressure. Biacetyl fluorescence increases with pressure and then levels off at high pressure when the relaxation is complete. The influence of the temperature is explained by a competition between the intersystem crossing and fluorescence. The effect of oxygen fluorescence quenching is important at high pressure and is discussed.

Journal

Experiments in FluidsSpringer Journals

Published: Nov 11, 2005

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off