Influence of precession on velocity measurements in a strong laboratory vortex

Influence of precession on velocity measurements in a strong laboratory vortex A strong laboratory vortex is generated in a cylindrical cell using a rotating disk and stretched by pumping the fluid out through a hole in the centre of the top of the cell. The velocity field is measured by means of laser Doppler anemometry and Doppler ultrasonic anemometry which are both non intrusive methods. The vortex exhibits a slight precession which induces temporal fluctuations of the velocity at the measurement point. Due to the centrifugal force, the tracers concentrate in a tubular region around the vortex, leading to spatial variations of the measurement counting rate. Under these two effects, the probability density function (PDF) of the one point velocity exhibits a strong non-Gaussian behaviour. In order to access the details of the velocity profile of the vortex in its own system of reference, the influence of the vortex precession, of the spatial variations of the concentration in tracers and of the intrinsic measurement dispersion is investigated and a model is proposed. It allows to recover statistically the characteristics of the vortex and to deduce the trajectory of its centre from the instantaneous velocity profiles. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Influence of precession on velocity measurements in a strong laboratory vortex

Loading next page...
 
/lp/springer_journal/influence-of-precession-on-velocity-measurements-in-a-strong-odMLLfGIu0
Publisher
Springer-Verlag
Copyright
Copyright © 1999 by Springer-Verlag Berlin Heidelberg
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s003480050343
Publisher site
See Article on Publisher Site

Abstract

A strong laboratory vortex is generated in a cylindrical cell using a rotating disk and stretched by pumping the fluid out through a hole in the centre of the top of the cell. The velocity field is measured by means of laser Doppler anemometry and Doppler ultrasonic anemometry which are both non intrusive methods. The vortex exhibits a slight precession which induces temporal fluctuations of the velocity at the measurement point. Due to the centrifugal force, the tracers concentrate in a tubular region around the vortex, leading to spatial variations of the measurement counting rate. Under these two effects, the probability density function (PDF) of the one point velocity exhibits a strong non-Gaussian behaviour. In order to access the details of the velocity profile of the vortex in its own system of reference, the influence of the vortex precession, of the spatial variations of the concentration in tracers and of the intrinsic measurement dispersion is investigated and a model is proposed. It allows to recover statistically the characteristics of the vortex and to deduce the trajectory of its centre from the instantaneous velocity profiles.

Journal

Experiments in FluidsSpringer Journals

Published: Jul 2, 1999

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off