Influence of non-stationary content of ground-motions on nonlinear dynamic response of RC bridge piers

Influence of non-stationary content of ground-motions on nonlinear dynamic response of RC bridge... This paper quantifies the impact of the non-stationary content (time-varying parameters that are not captured by power spectral content alone) of different ground-motion types (near/far field, with/without pulses time-series) on the nonlinear dynamic response of reinforced concrete bridge piers, taking into account the material cyclic degradation. Three groups of ground motions are selected to represent far-field, near-field without pulse and near-field pulse-like ground motions. Three analysis cases are considered corresponding to acceleration series matched to the mean response spectrum of: (1) far field, (2) near-field without pulse and (3) near-field pulse-like ground-motions, respectively. Using the selected ground motions, several nonlinear incremental dynamic analyses of prototype reinforced concrete bridge piers with a range of fundamental periods are conducted. Finally, a comparison between the response of the structures using the material model accounting for both buckling and low-cycle fatigue of reinforcing steel and the more conventional material model that does not account for these effects is made. The results show that the inelastic buckling and low-cycle fatigue have a significant influence on the nonlinear response of the RC bridge piers considered and that pulse effects can increase the mean acceleration response by about 50%. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Bulletin of Earthquake Engineering Springer Journals

Influence of non-stationary content of ground-motions on nonlinear dynamic response of RC bridge piers

Loading next page...
 
/lp/springer_journal/influence-of-non-stationary-content-of-ground-motions-on-nonlinear-xgchfXftHP
Publisher
Springer Journals
Copyright
Copyright © 2017 by Springer Science+Business Media Dordrecht
Subject
Earth Sciences; Geotechnical Engineering & Applied Earth Sciences; Environmental Engineering/Biotechnology; Civil Engineering; Geophysics/Geodesy; Hydrogeology; Structural Geology
ISSN
1570-761X
eISSN
1573-1456
D.O.I.
10.1007/s10518-017-0116-8
Publisher site
See Article on Publisher Site

Abstract

This paper quantifies the impact of the non-stationary content (time-varying parameters that are not captured by power spectral content alone) of different ground-motion types (near/far field, with/without pulses time-series) on the nonlinear dynamic response of reinforced concrete bridge piers, taking into account the material cyclic degradation. Three groups of ground motions are selected to represent far-field, near-field without pulse and near-field pulse-like ground motions. Three analysis cases are considered corresponding to acceleration series matched to the mean response spectrum of: (1) far field, (2) near-field without pulse and (3) near-field pulse-like ground-motions, respectively. Using the selected ground motions, several nonlinear incremental dynamic analyses of prototype reinforced concrete bridge piers with a range of fundamental periods are conducted. Finally, a comparison between the response of the structures using the material model accounting for both buckling and low-cycle fatigue of reinforcing steel and the more conventional material model that does not account for these effects is made. The results show that the inelastic buckling and low-cycle fatigue have a significant influence on the nonlinear response of the RC bridge piers considered and that pulse effects can increase the mean acceleration response by about 50%.

Journal

Bulletin of Earthquake EngineeringSpringer Journals

Published: Mar 17, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off