Influence of non-stationary content of ground-motions on nonlinear dynamic response of RC bridge piers

Influence of non-stationary content of ground-motions on nonlinear dynamic response of RC bridge... This paper quantifies the impact of the non-stationary content (time-varying parameters that are not captured by power spectral content alone) of different ground-motion types (near/far field, with/without pulses time-series) on the nonlinear dynamic response of reinforced concrete bridge piers, taking into account the material cyclic degradation. Three groups of ground motions are selected to represent far-field, near-field without pulse and near-field pulse-like ground motions. Three analysis cases are considered corresponding to acceleration series matched to the mean response spectrum of: (1) far field, (2) near-field without pulse and (3) near-field pulse-like ground-motions, respectively. Using the selected ground motions, several nonlinear incremental dynamic analyses of prototype reinforced concrete bridge piers with a range of fundamental periods are conducted. Finally, a comparison between the response of the structures using the material model accounting for both buckling and low-cycle fatigue of reinforcing steel and the more conventional material model that does not account for these effects is made. The results show that the inelastic buckling and low-cycle fatigue have a significant influence on the nonlinear response of the RC bridge piers considered and that pulse effects can increase the mean acceleration response by about 50%. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Bulletin of Earthquake Engineering Springer Journals

Influence of non-stationary content of ground-motions on nonlinear dynamic response of RC bridge piers

Loading next page...
 
/lp/springer_journal/influence-of-non-stationary-content-of-ground-motions-on-nonlinear-xgchfXftHP
Publisher
Springer Netherlands
Copyright
Copyright © 2017 by Springer Science+Business Media Dordrecht
Subject
Earth Sciences; Geotechnical Engineering & Applied Earth Sciences; Environmental Engineering/Biotechnology; Civil Engineering; Geophysics/Geodesy; Hydrogeology; Structural Geology
ISSN
1570-761X
eISSN
1573-1456
D.O.I.
10.1007/s10518-017-0116-8
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial