Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Influence of Linkage Stereochemistry and Protecting Groups on Glycosidic Bond Stability of Sodium Cationized Glycosyl Phosphates

Influence of Linkage Stereochemistry and Protecting Groups on Glycosidic Bond Stability of Sodium... Energy-resolved collision-induced dissociation (ER-CID) experiments of sodium cationized glycosyl phosphate complexes, [GP x +Na]+, are performed to elucidate the effects of linkage stereochemistry (α versus β), the geometry of the leaving groups (1,2-cis versus 1,2-trans), and protecting groups (cyclic versus non-cyclic) on the stability of the glycosyl phosphate linkage via survival yield analyses. A four parameter logistic dynamic fitting model is used to determine CID50% values, which correspond to the level of rf excitation required to produce 50% dissociation of the precursor ion complexes. Present results suggest that dissociation of 1,2-trans [GP x +Na]+ occurs via a McLafferty-type rearrangement that is facilitated by a syn orientation of the leaving groups, whereas dissociation of 1,2-cis [GPx+Na]+ is more energetic as it involves the formation of an oxocarbenium ion intermediate. Thus, the C1−C2 configuration plays a major role in determining the stability/reactivity of glycosyl phosphate stereoisomers. For 1,2-cis anomers, the cyclic protecting groups at the C4 and C6 positions stabilize the glycosidic bond, whereas for 1,2-trans anomers, the cyclic protecting groups at the C4 and C6 positions tend to activate the glycosidic bond. The C3 O-benzyl (3 BnO) substituent is key to determining whether the sugar or phosphate moiety retains the sodium cation upon CID. For 1,2-cis anomers, the 3 BnO substituent weakens the glycosidic bond, whereas for 1,2-trans anomers, the 3 BnO substituent stabilizes the glycosidic bond. The C2 O-benzyl substituent does not significantly impact the glycosidic bond stability regardless of its orientation. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of the American Society for Mass Spectrometry Springer Journals

Influence of Linkage Stereochemistry and Protecting Groups on Glycosidic Bond Stability of Sodium Cationized Glycosyl Phosphates

Loading next page...
1
 
/lp/springer_journal/influence-of-linkage-stereochemistry-and-protecting-groups-on-REe1n0golD

References (84)

Publisher
Springer Journals
Copyright
Copyright © 2017 by American Society for Mass Spectrometry
Subject
Chemistry; Analytical Chemistry; Biotechnology; Organic Chemistry; Proteomics; Bioinformatics
ISSN
1044-0305
eISSN
1879-1123
DOI
10.1007/s13361-017-1780-2
Publisher site
See Article on Publisher Site

Abstract

Energy-resolved collision-induced dissociation (ER-CID) experiments of sodium cationized glycosyl phosphate complexes, [GP x +Na]+, are performed to elucidate the effects of linkage stereochemistry (α versus β), the geometry of the leaving groups (1,2-cis versus 1,2-trans), and protecting groups (cyclic versus non-cyclic) on the stability of the glycosyl phosphate linkage via survival yield analyses. A four parameter logistic dynamic fitting model is used to determine CID50% values, which correspond to the level of rf excitation required to produce 50% dissociation of the precursor ion complexes. Present results suggest that dissociation of 1,2-trans [GP x +Na]+ occurs via a McLafferty-type rearrangement that is facilitated by a syn orientation of the leaving groups, whereas dissociation of 1,2-cis [GPx+Na]+ is more energetic as it involves the formation of an oxocarbenium ion intermediate. Thus, the C1−C2 configuration plays a major role in determining the stability/reactivity of glycosyl phosphate stereoisomers. For 1,2-cis anomers, the cyclic protecting groups at the C4 and C6 positions stabilize the glycosidic bond, whereas for 1,2-trans anomers, the cyclic protecting groups at the C4 and C6 positions tend to activate the glycosidic bond. The C3 O-benzyl (3 BnO) substituent is key to determining whether the sugar or phosphate moiety retains the sodium cation upon CID. For 1,2-cis anomers, the 3 BnO substituent weakens the glycosidic bond, whereas for 1,2-trans anomers, the 3 BnO substituent stabilizes the glycosidic bond. The C2 O-benzyl substituent does not significantly impact the glycosidic bond stability regardless of its orientation.

Journal

Journal of the American Society for Mass SpectrometrySpringer Journals

Published: Sep 18, 2017

There are no references for this article.