Influence of light on the apoplastic ph in microwounded cells of Chara corallina

Influence of light on the apoplastic ph in microwounded cells of Chara corallina Microscopic wounding of plant cell walls by pathogens or by feeding insects triggers the defense responses, including a sharp rise in pH at the cell surface (pHo). Using internodal cells of Chara corallina Klein ex Willd., we show here that the elevated pHo in the area of cell wall microincision decreases in darkness and increases on illumination. These pHo changes occurred specifically in cell areas affected by microincision and were lacking in intact areas with active pHotosynthesis (acid zones). Localized illumination of a remote cell region located upstream the cytoplasmic flow at a 1.5-mm distance from the analyzed area also caused a transient increase in pHo in the area of microwounding but had no such effect in unwounded cell regions having weakly acidic pHo. Apparently, the increase in pHo after wounding is mediated by a metabolite released from illuminated chloroplasts, which is transported with the cytoplasmic flow for long distances. The transient pHo increase in the area of cell wall incision after illumination of a distant cell region coincided with a temporal increase in chlorophyll fluorescence F’. This implies the concurrent influence of the transported reductant (presumably NADH) on light emission of chloroplasts and on the H+ flow across the plasmalemma. We suppose that the alkalinization of cell surface in the area of microincision arises from H+ consumption in the apoplast in association with the transmembrane electron transport from cytoplasmic reducing equivalents to molecular oxygen. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

Influence of light on the apoplastic ph in microwounded cells of Chara corallina

Loading next page...
 
/lp/springer_journal/influence-of-light-on-the-apoplastic-ph-in-microwounded-cells-of-chara-GRUbXilsqA
Publisher
Pleiades Publishing
Copyright
Copyright © 2016 by Pleiades Publishing, Ltd.
Subject
Life Sciences; Plant Physiology; Plant Sciences
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1134/S1021443716010039
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial