Influence of KMnO4 oxidation on the electrochemical performance of pitch-based activated carbons

Influence of KMnO4 oxidation on the electrochemical performance of pitch-based activated carbons In this work, activated carbons (ACs) are obtained from petroleum pitch by the combination of a chemical treatment with different potassium permanganate (KMnO4) amounts, i.e., 0, 0.5, 1.0, and 2.0 g, and a chemical activation with KOH at a constant KOH/pitch ratio of 3/1. The effects of the chemical activating agent on the surface morphology and porosity are evaluated with scanning electron microscopy and N2 adsorption isotherms at 77 K, respectively. The specific surface area of the pitch-based ACs is increased with increasing the amount of KMnO4 pre-treatment and showed the highest value of 2,334 m2 g−1 at 2 g of KMnO4 amount. The electrochemical performance of AC electrodes is examined by cyclic voltammetry and galvanostatic charge/discharge characteristics in 6 M KOH electrolyte. Among the prepared ACs, 2.0 K-ACs possesses a specific capacitance as high as 237 F g−1 and showed excellent electrochemical performance due to its suitable porous structure and low interface resistance. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

Influence of KMnO4 oxidation on the electrochemical performance of pitch-based activated carbons

Loading next page...
 
/lp/springer_journal/influence-of-kmno4-oxidation-on-the-electrochemical-performance-of-ungXigal2x
Publisher
Springer Netherlands
Copyright
Copyright © 2014 by Springer Science+Business Media Dordrecht
Subject
Chemistry; Catalysis; Physical Chemistry; Inorganic Chemistry
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1007/s11164-014-1664-z
Publisher site
See Article on Publisher Site

Abstract

In this work, activated carbons (ACs) are obtained from petroleum pitch by the combination of a chemical treatment with different potassium permanganate (KMnO4) amounts, i.e., 0, 0.5, 1.0, and 2.0 g, and a chemical activation with KOH at a constant KOH/pitch ratio of 3/1. The effects of the chemical activating agent on the surface morphology and porosity are evaluated with scanning electron microscopy and N2 adsorption isotherms at 77 K, respectively. The specific surface area of the pitch-based ACs is increased with increasing the amount of KMnO4 pre-treatment and showed the highest value of 2,334 m2 g−1 at 2 g of KMnO4 amount. The electrochemical performance of AC electrodes is examined by cyclic voltammetry and galvanostatic charge/discharge characteristics in 6 M KOH electrolyte. Among the prepared ACs, 2.0 K-ACs possesses a specific capacitance as high as 237 F g−1 and showed excellent electrochemical performance due to its suitable porous structure and low interface resistance.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: May 25, 2014

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off