Influence of intrinsic decoherence on entanglement teleportation via a Heisenberg XYZ model with different Dzyaloshinskii–Moriya interactions

Influence of intrinsic decoherence on entanglement teleportation via a Heisenberg XYZ model with... We investigate the characteristics of entanglement teleportation of a two-qubit and three-qubit Heisenberg XYZ model under different Dzyaloshinskii–Moriya (DM) interactions with intrinsic decoherence taken into account. The two-qubit results reveal that the dynamics of entanglement is a symmetric function about the coupling coefficient $$J$$ J for the $$z$$ z -component DM system, whereas it is not for the $$x$$ x -component DM system. The ferromagnetic case is superior to the antiferromagnetic case to restrain decoherence when using the $$x$$ x -component DM system. The dependencies of entanglement, the output entanglement, and the average fidelity on initial state angle $$\alpha $$ α all demonstrate periodicity. Moreover, the $$x$$ x -component DM system can get a high fidelity both in two-qubit and in three-qubit teleportation protocol. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Quantum Information Processing Springer Journals

Influence of intrinsic decoherence on entanglement teleportation via a Heisenberg XYZ model with different Dzyaloshinskii–Moriya interactions

Loading next page...
 
/lp/springer_journal/influence-of-intrinsic-decoherence-on-entanglement-teleportation-via-a-wu014PI8Ef
Publisher
Springer US
Copyright
Copyright © 2015 by Springer Science+Business Media New York
Subject
Physics; Quantum Information Technology, Spintronics; Quantum Computing; Data Structures, Cryptology and Information Theory; Quantum Physics; Mathematical Physics
ISSN
1570-0755
eISSN
1573-1332
D.O.I.
10.1007/s11128-015-0978-0
Publisher site
See Article on Publisher Site

Abstract

We investigate the characteristics of entanglement teleportation of a two-qubit and three-qubit Heisenberg XYZ model under different Dzyaloshinskii–Moriya (DM) interactions with intrinsic decoherence taken into account. The two-qubit results reveal that the dynamics of entanglement is a symmetric function about the coupling coefficient $$J$$ J for the $$z$$ z -component DM system, whereas it is not for the $$x$$ x -component DM system. The ferromagnetic case is superior to the antiferromagnetic case to restrain decoherence when using the $$x$$ x -component DM system. The dependencies of entanglement, the output entanglement, and the average fidelity on initial state angle $$\alpha $$ α all demonstrate periodicity. Moreover, the $$x$$ x -component DM system can get a high fidelity both in two-qubit and in three-qubit teleportation protocol.

Journal

Quantum Information ProcessingSpringer Journals

Published: Apr 2, 2015

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off