Influence of initial micro-crack damage on strength and micro-cracking behavior of an intrusive crystalline rock

Influence of initial micro-crack damage on strength and micro-cracking behavior of an intrusive... Rocks inherently contain some micro-cracks. The existence of initial micro-cracks introduces weakness to the rock specimen and hence affects the strength and deformation behavior of rocks. This paper numerically investigates the influence of initial micro- crack damage on the strength and deformation behavior and the associated micro-cracking process of a crystalline rock using a previously-calibrated grain-based model (GBM), which is implemented in two-dimensional Particle Flow Code (PFC2D). The initial micro-crack damage is generated by loading/unloading of the model numerically, and a damage parameter is defined to quantify the degree of initial micro-crack damage. After the initial micro-crack damage is generated, compressive loading tests under different confining pressures are conducted. The simulation results reveal that the initial micro-crack damage has a significant influence on the simulated stress–strain curve, rock strength, elastic modulus, and total number of generated micro- cracks. In general, as the initial micro-crack damage increases in the numerical model, the simulated rock strength and elastic modulus gradually decrease. However, the decrease in rock property (strength and elastic modulus) will become significant only after sufficiently high initial micro-crack damage in the model is reached. The elastic modulus to UCS ratio (E/UCS) is not significantly affected by the initial micro-crack http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Bulletin of Engineering Geology and the Environment Springer Journals

Influence of initial micro-crack damage on strength and micro-cracking behavior of an intrusive crystalline rock

Loading next page...
 
/lp/springer_journal/influence-of-initial-micro-crack-damage-on-strength-and-micro-cracking-7JCkD4oBrW
Publisher
Springer Journals
Copyright
Copyright © 2018 by Springer-Verlag GmbH Germany, part of Springer Nature
Subject
Earth Sciences; Geotechnical Engineering & Applied Earth Sciences; Geoengineering, Foundations, Hydraulics; Geoecology/Natural Processes; Nature Conservation
ISSN
1435-9529
eISSN
1435-9537
D.O.I.
10.1007/s10064-018-1317-3
Publisher site
See Article on Publisher Site

Abstract

Rocks inherently contain some micro-cracks. The existence of initial micro-cracks introduces weakness to the rock specimen and hence affects the strength and deformation behavior of rocks. This paper numerically investigates the influence of initial micro- crack damage on the strength and deformation behavior and the associated micro-cracking process of a crystalline rock using a previously-calibrated grain-based model (GBM), which is implemented in two-dimensional Particle Flow Code (PFC2D). The initial micro-crack damage is generated by loading/unloading of the model numerically, and a damage parameter is defined to quantify the degree of initial micro-crack damage. After the initial micro-crack damage is generated, compressive loading tests under different confining pressures are conducted. The simulation results reveal that the initial micro-crack damage has a significant influence on the simulated stress–strain curve, rock strength, elastic modulus, and total number of generated micro- cracks. In general, as the initial micro-crack damage increases in the numerical model, the simulated rock strength and elastic modulus gradually decrease. However, the decrease in rock property (strength and elastic modulus) will become significant only after sufficiently high initial micro-crack damage in the model is reached. The elastic modulus to UCS ratio (E/UCS) is not significantly affected by the initial micro-crack

Journal

Bulletin of Engineering Geology and the EnvironmentSpringer Journals

Published: Jun 6, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off