Influence of GMPLS Recovery Mechanisms on TCP Performance

Influence of GMPLS Recovery Mechanisms on TCP Performance Optical networks based on wavelength-division-multiplexing (WDM) techniques are very likely to be omnipresent in future telecommunication networks. Those networks are deployed in order to face the steady growth of traffic, which is for a large part Internet related. In the resulting IP-over-WDM scenario, TCP/IP constitutes an important fraction of the traffic transported over these networks. As IP networks are becoming increasingly mission-critical, it is of the utmost importance that these networks (and hence the supporting transport networks) be able to recover quickly from failures such as cable breaks or equipment outages. To that end, several IP-over-WDM network scenarios and corresponding protection and restoration strategies have been devised. It is clear that some trade-offs will have to be made in order to choose an appropriate strategy. In this paper, we investigate the effects of such recovery actions on the behavior of TCP, being the ubiquitous protocol used by today's network users. We examine the influence of different parameters such as the speed of recovery actions, changing length of the routes followed by the client data (TCP flows), changes in available bandwidth, etc. Thereby, we focus on what the TCP end-users care about, i.e., the number of bytes transported end-to-end within a certain time interval. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Photonic Network Communications Springer Journals

Influence of GMPLS Recovery Mechanisms on TCP Performance

Loading next page...
 
/lp/springer_journal/influence-of-gmpls-recovery-mechanisms-on-tcp-performance-WTYpoH0f9D
Publisher
Springer Journals
Copyright
Copyright © 2002 by Kluwer Academic Publishers
Subject
Computer Science; Computer Communication Networks; Electrical Engineering; Characterization and Evaluation of Materials
ISSN
1387-974X
eISSN
1572-8188
D.O.I.
10.1023/A:1016064014931
Publisher site
See Article on Publisher Site

Abstract

Optical networks based on wavelength-division-multiplexing (WDM) techniques are very likely to be omnipresent in future telecommunication networks. Those networks are deployed in order to face the steady growth of traffic, which is for a large part Internet related. In the resulting IP-over-WDM scenario, TCP/IP constitutes an important fraction of the traffic transported over these networks. As IP networks are becoming increasingly mission-critical, it is of the utmost importance that these networks (and hence the supporting transport networks) be able to recover quickly from failures such as cable breaks or equipment outages. To that end, several IP-over-WDM network scenarios and corresponding protection and restoration strategies have been devised. It is clear that some trade-offs will have to be made in order to choose an appropriate strategy. In this paper, we investigate the effects of such recovery actions on the behavior of TCP, being the ubiquitous protocol used by today's network users. We examine the influence of different parameters such as the speed of recovery actions, changing length of the routes followed by the client data (TCP flows), changes in available bandwidth, etc. Thereby, we focus on what the TCP end-users care about, i.e., the number of bytes transported end-to-end within a certain time interval.

Journal

Photonic Network CommunicationsSpringer Journals

Published: Oct 13, 2004

References

  • MPLS recovery mechanisms for IP-over-WDM networks
    Colle, D.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off