Influence of edge hone radius on cutting forces, surface integrity, and surface oxidation in hard milling of AISI H13 steel

Influence of edge hone radius on cutting forces, surface integrity, and surface oxidation in hard... Tool edge preparation has a remarkable influence on tool wear behavior and therefore on the machining performance. In this present research, hard milling of AISI H13 steel (50 ± 1HRC) with uncoated carbide tools was experimentally conducted to identify the effect of an edge hone radius on cutting force, surface integrity (surface roughness, hardness, microstructural changes, and residual stress), and surface oxidation. Experimental results are evaluated by means of an optical profilometer, Nano Tester, optical microscope, SEM, XRD, X-ray stress measurement, and EDS. First, the effect of edge hone radius on cutting forces and surface integrity is significant. That is the cutting and feed forces increase with the increase of edge hone radius, and the lower surface roughness is obtained when using a cutting tool with edge hone radius of 30 μm. Secondly, the nano-hardness in the machined surface, depth of plastic deformation, and compressive residual stress increase with the increase of edge hone radius. Thirdly, neither a white layer nor phase transformation occurs in the machined surface during hard milling process. Finally, no oxygen enrichment and carbon concentration is observed in the subsurface. This research is benefitted to providing a guide to optimize the edge hone radius and acquires a desirable machining performance. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The International Journal of Advanced Manufacturing Technology Springer Journals

Influence of edge hone radius on cutting forces, surface integrity, and surface oxidation in hard milling of AISI H13 steel

Loading next page...
 
/lp/springer_journal/influence-of-edge-hone-radius-on-cutting-forces-surface-integrity-and-WO3k9wkuf7
Publisher
Springer London
Copyright
Copyright © 2017 by Springer-Verlag London Ltd., part of Springer Nature
Subject
Engineering; Industrial and Production Engineering; Media Management; Mechanical Engineering; Computer-Aided Engineering (CAD, CAE) and Design
ISSN
0268-3768
eISSN
1433-3015
D.O.I.
10.1007/s00170-017-1292-z
Publisher site
See Article on Publisher Site

Abstract

Tool edge preparation has a remarkable influence on tool wear behavior and therefore on the machining performance. In this present research, hard milling of AISI H13 steel (50 ± 1HRC) with uncoated carbide tools was experimentally conducted to identify the effect of an edge hone radius on cutting force, surface integrity (surface roughness, hardness, microstructural changes, and residual stress), and surface oxidation. Experimental results are evaluated by means of an optical profilometer, Nano Tester, optical microscope, SEM, XRD, X-ray stress measurement, and EDS. First, the effect of edge hone radius on cutting forces and surface integrity is significant. That is the cutting and feed forces increase with the increase of edge hone radius, and the lower surface roughness is obtained when using a cutting tool with edge hone radius of 30 μm. Secondly, the nano-hardness in the machined surface, depth of plastic deformation, and compressive residual stress increase with the increase of edge hone radius. Thirdly, neither a white layer nor phase transformation occurs in the machined surface during hard milling process. Finally, no oxygen enrichment and carbon concentration is observed in the subsurface. This research is benefitted to providing a guide to optimize the edge hone radius and acquires a desirable machining performance.

Journal

The International Journal of Advanced Manufacturing TechnologySpringer Journals

Published: Nov 8, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Access to DeepDyve database
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off