Influence of edge hone radius on cutting forces, surface integrity, and surface oxidation in hard milling of AISI H13 steel

Influence of edge hone radius on cutting forces, surface integrity, and surface oxidation in hard... Tool edge preparation has a remarkable influence on tool wear behavior and therefore on the machining performance. In this present research, hard milling of AISI H13 steel (50 ± 1HRC) with uncoated carbide tools was experimentally conducted to identify the effect of an edge hone radius on cutting force, surface integrity (surface roughness, hardness, microstructural changes, and residual stress), and surface oxidation. Experimental results are evaluated by means of an optical profilometer, Nano Tester, optical microscope, SEM, XRD, X-ray stress measurement, and EDS. First, the effect of edge hone radius on cutting forces and surface integrity is significant. That is the cutting and feed forces increase with the increase of edge hone radius, and the lower surface roughness is obtained when using a cutting tool with edge hone radius of 30 μm. Secondly, the nano-hardness in the machined surface, depth of plastic deformation, and compressive residual stress increase with the increase of edge hone radius. Thirdly, neither a white layer nor phase transformation occurs in the machined surface during hard milling process. Finally, no oxygen enrichment and carbon concentration is observed in the subsurface. This research is benefitted to providing a guide to optimize the edge hone radius and acquires a desirable machining performance. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The International Journal of Advanced Manufacturing Technology Springer Journals

Influence of edge hone radius on cutting forces, surface integrity, and surface oxidation in hard milling of AISI H13 steel

Loading next page...
 
/lp/springer_journal/influence-of-edge-hone-radius-on-cutting-forces-surface-integrity-and-WO3k9wkuf7
Publisher
Springer London
Copyright
Copyright © 2017 by Springer-Verlag London Ltd., part of Springer Nature
Subject
Engineering; Industrial and Production Engineering; Media Management; Mechanical Engineering; Computer-Aided Engineering (CAD, CAE) and Design
ISSN
0268-3768
eISSN
1433-3015
D.O.I.
10.1007/s00170-017-1292-z
Publisher site
See Article on Publisher Site

Abstract

Tool edge preparation has a remarkable influence on tool wear behavior and therefore on the machining performance. In this present research, hard milling of AISI H13 steel (50 ± 1HRC) with uncoated carbide tools was experimentally conducted to identify the effect of an edge hone radius on cutting force, surface integrity (surface roughness, hardness, microstructural changes, and residual stress), and surface oxidation. Experimental results are evaluated by means of an optical profilometer, Nano Tester, optical microscope, SEM, XRD, X-ray stress measurement, and EDS. First, the effect of edge hone radius on cutting forces and surface integrity is significant. That is the cutting and feed forces increase with the increase of edge hone radius, and the lower surface roughness is obtained when using a cutting tool with edge hone radius of 30 μm. Secondly, the nano-hardness in the machined surface, depth of plastic deformation, and compressive residual stress increase with the increase of edge hone radius. Thirdly, neither a white layer nor phase transformation occurs in the machined surface during hard milling process. Finally, no oxygen enrichment and carbon concentration is observed in the subsurface. This research is benefitted to providing a guide to optimize the edge hone radius and acquires a desirable machining performance.

Journal

The International Journal of Advanced Manufacturing TechnologySpringer Journals

Published: Nov 8, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off