Influence of Dzyaloshinshkii–Moriya interaction on quantum correlations in two-qubit Werner states and MEMS

Influence of Dzyaloshinshkii–Moriya interaction on quantum correlations in two-qubit Werner... In this paper, we study the influence of Dzyaloshinskii–Moriya (DM) interaction on quantum correlations in two-qubit Werner states and maximally entangled mixed states (MEMS). We consider our system as a closed system of a qubit pair and one auxiliary qubit, which interact with any one of the qubit of the pair through DM interaction. We show that DM interaction, taken along any direction (x or y or z), does not affect two-qubit Werner states. On the other hand, the MEMS are affected by x and z components of DM interaction and remain unaffected by the y component. Further, we find that the state (i.e., probability amplitude) of auxiliary qubit does not affect the quantum correlations in both the states, and only DM interaction strength influences the quantum correlations. So one can avoid the intention to prepare the specific state of auxiliary qubit to manipulate the quantum correlations in both the states. We mention here that avoiding the preparation of state can contribute to cost reduction in quantum information processing. We also observe the phenomenon of entanglement sudden death in the present study. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Quantum Information Processing Springer Journals

Influence of Dzyaloshinshkii–Moriya interaction on quantum correlations in two-qubit Werner states and MEMS

Loading next page...
 
/lp/springer_journal/influence-of-dzyaloshinshkii-moriya-interaction-on-quantum-Lmkq0MmYfS
Publisher
Springer Journals
Copyright
Copyright © 2015 by Springer Science+Business Media New York
Subject
Physics; Quantum Information Technology, Spintronics; Quantum Computing; Data Structures, Cryptology and Information Theory; Quantum Physics; Mathematical Physics
ISSN
1570-0755
eISSN
1573-1332
D.O.I.
10.1007/s11128-015-0928-x
Publisher site
See Article on Publisher Site

Abstract

In this paper, we study the influence of Dzyaloshinskii–Moriya (DM) interaction on quantum correlations in two-qubit Werner states and maximally entangled mixed states (MEMS). We consider our system as a closed system of a qubit pair and one auxiliary qubit, which interact with any one of the qubit of the pair through DM interaction. We show that DM interaction, taken along any direction (x or y or z), does not affect two-qubit Werner states. On the other hand, the MEMS are affected by x and z components of DM interaction and remain unaffected by the y component. Further, we find that the state (i.e., probability amplitude) of auxiliary qubit does not affect the quantum correlations in both the states, and only DM interaction strength influences the quantum correlations. So one can avoid the intention to prepare the specific state of auxiliary qubit to manipulate the quantum correlations in both the states. We mention here that avoiding the preparation of state can contribute to cost reduction in quantum information processing. We also observe the phenomenon of entanglement sudden death in the present study.

Journal

Quantum Information ProcessingSpringer Journals

Published: Jan 28, 2015

References

  • Can quantum-mechanical description of physical reality be considered complete?
    Einstein, A; Podolsky, B; Rosen, N

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off