Influence of drag-reducing polymers on turbulence: effects of Reynolds number, concentration and mixing

Influence of drag-reducing polymers on turbulence: effects of Reynolds number, concentration and...  Measurements of turbulence properties of solutions of polymers have been made over a large range of drag-reduction, in a fully-developed channel flow. At flows close to maximum drag-reduction the Reynolds stresses were approximately zero over the whole cross section of the channel. Added mean polymer stresses were observed in the viscous wall region for small drag-reduction and over the whole cross-section for large drag-reduction. Even though the Reynolds stresses are zero, the velocity profile is not parabolic because of the presence of these mean stresses. We interpret the results by arguing that the interaction of turbulence with the polymers introduces mean and fluctuating polymer stresses which can create turbulence. The observation that the turbulence modification depends on the manner by which the polymers are introduced into the flow supports the notion that the polymers need to form aggregates in order to be effective. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Influence of drag-reducing polymers on turbulence: effects of Reynolds number, concentration and mixing

Loading next page...
 
/lp/springer_journal/influence-of-drag-reducing-polymers-on-turbulence-effects-of-reynolds-Pv0uQtfCoA
Publisher
Springer Journals
Copyright
Copyright © 1999 by Springer-Verlag Berlin Heidelberg
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s003480050371
Publisher site
See Article on Publisher Site

Abstract

 Measurements of turbulence properties of solutions of polymers have been made over a large range of drag-reduction, in a fully-developed channel flow. At flows close to maximum drag-reduction the Reynolds stresses were approximately zero over the whole cross section of the channel. Added mean polymer stresses were observed in the viscous wall region for small drag-reduction and over the whole cross-section for large drag-reduction. Even though the Reynolds stresses are zero, the velocity profile is not parabolic because of the presence of these mean stresses. We interpret the results by arguing that the interaction of turbulence with the polymers introduces mean and fluctuating polymer stresses which can create turbulence. The observation that the turbulence modification depends on the manner by which the polymers are introduced into the flow supports the notion that the polymers need to form aggregates in order to be effective.

Journal

Experiments in FluidsSpringer Journals

Published: Oct 4, 1999

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off