Influence of Ca2+ ions substitution on structural, microstructural, electrical and magnetic properties of Mg0.2−xCaxMn0.5Zn0.3Fe2O4 ferrites

Influence of Ca2+ ions substitution on structural, microstructural, electrical and magnetic... Mg–Ca–Mn–Zn ferrites having general formula Mg0.2−xCaxMn0.3Zn0.5Fe2O4 (x = 0, 0.10, 0.15 and 0.20) were synthesized using solid state reaction method and sintered at 1100 and 1200 °C for 4 h. Structural, microstructural and elemental analyses of synthesized ferrites were performed by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM) and energy dispersive analysis of X-ray. A cubical spinel crystal structure with secondary phases is conformed in synthesized samples by XRD analysis. The lattice parameter decreased initially and then increases at x = 0.20 at 1100 °C. On contrary, the lattice parameter increases with Ca2+ ions concentration at 1200 °C which is attributed due to the different ionic radius of Mg2+ and Ca2+ ions. The FTIR spectra show the presence of high frequency and low frequency band at 559.36–460.14 cm−1 at 1100 °C and 549.71–558.35 cm−1 at 1200 °C corresponding to the tetrahedral and the octahedral sites. The SEM images revealed that the average grain size increases with the increase of Ca2+ ions concentration which may be attributed due to the fact that Ca2+ ions influences the microstructure by forming a liquid phase during sintering process and expedites the grain growth by lowering the rate of cation interdiffusion. Low frequency dielectric dispersion is consistent with the Maxwell–Wagner interfacial polarization. Dielectric constant increases with Ca2+ concentration for both sintering temperatures. The samples x = 0.10 and 0.15 exhibits highest conductivity at 1100 and 1200 °C, respectively because the electron hopping between Fe3+ and Fe2+ ions increases. The conduction process is attributed due to the presence of grain and grain boundary effect as revealed by the impedance study. The significant decrement in permeability with Ca2+ concentration is attributed due to the lower saturation magnetization and increased inner stress or crystal magnetic anisotropy. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Materials Science: Materials in Electronics Springer Journals

Influence of Ca2+ ions substitution on structural, microstructural, electrical and magnetic properties of Mg0.2−xCaxMn0.5Zn0.3Fe2O4 ferrites

Loading next page...
 
/lp/springer_journal/influence-of-ca2-ions-substitution-on-structural-microstructural-CHCtO4cot6
Publisher
Springer US
Copyright
Copyright © 2017 by Springer Science+Business Media New York
Subject
Materials Science; Optical and Electronic Materials; Characterization and Evaluation of Materials
ISSN
0957-4522
eISSN
1573-482X
D.O.I.
10.1007/s10854-017-7154-5
Publisher site
See Article on Publisher Site

Abstract

Mg–Ca–Mn–Zn ferrites having general formula Mg0.2−xCaxMn0.3Zn0.5Fe2O4 (x = 0, 0.10, 0.15 and 0.20) were synthesized using solid state reaction method and sintered at 1100 and 1200 °C for 4 h. Structural, microstructural and elemental analyses of synthesized ferrites were performed by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM) and energy dispersive analysis of X-ray. A cubical spinel crystal structure with secondary phases is conformed in synthesized samples by XRD analysis. The lattice parameter decreased initially and then increases at x = 0.20 at 1100 °C. On contrary, the lattice parameter increases with Ca2+ ions concentration at 1200 °C which is attributed due to the different ionic radius of Mg2+ and Ca2+ ions. The FTIR spectra show the presence of high frequency and low frequency band at 559.36–460.14 cm−1 at 1100 °C and 549.71–558.35 cm−1 at 1200 °C corresponding to the tetrahedral and the octahedral sites. The SEM images revealed that the average grain size increases with the increase of Ca2+ ions concentration which may be attributed due to the fact that Ca2+ ions influences the microstructure by forming a liquid phase during sintering process and expedites the grain growth by lowering the rate of cation interdiffusion. Low frequency dielectric dispersion is consistent with the Maxwell–Wagner interfacial polarization. Dielectric constant increases with Ca2+ concentration for both sintering temperatures. The samples x = 0.10 and 0.15 exhibits highest conductivity at 1100 and 1200 °C, respectively because the electron hopping between Fe3+ and Fe2+ ions increases. The conduction process is attributed due to the presence of grain and grain boundary effect as revealed by the impedance study. The significant decrement in permeability with Ca2+ concentration is attributed due to the lower saturation magnetization and increased inner stress or crystal magnetic anisotropy.

Journal

Journal of Materials Science: Materials in ElectronicsSpringer Journals

Published: May 19, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off