Influence of axial magnetic field on shape and microstructure of stainless steel laser welding joint

Influence of axial magnetic field on shape and microstructure of stainless steel laser welding joint The morphology and microstructure of the weld joint have significant influence on mechanical properties of welded specimens. In this paper, the mechanism on how the external magnetic field affected weld profile and microstructure was discussed by applying the longitudinal steady magnetic field to laser welding for SUS301 stainless steel. The optimal and scanning electron microscopes were used to measure the shape of the cross section and observe the microstructure after welding. The results showed that the shape of the cross section and microstructure could be significantly changed using the external magnetic field. Moreover, joint shape changed distinctly with the magnetic field intensity changing. With the increasing of magnetic flux density, the weld profile of the full penetration model changed from funnel to X type; meanwhile, the bottom weld width increased by 40%. In addition, the partial fusion zone occurred, and the weld width decreased by 20% while penetration increased by 18% when magnetic flux density turned into 380 mT. As far as microstructure of weld joint was concerned, it appeared that application of axial magnetic field led to indistinct fusion line and blocky austenite in big size rather than columnar grain in the center of the cross section. This phenomenon could be explained by numerical simulation results. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The International Journal of Advanced Manufacturing Technology Springer Journals

Influence of axial magnetic field on shape and microstructure of stainless steel laser welding joint

Loading next page...
 
/lp/springer_journal/influence-of-axial-magnetic-field-on-shape-and-microstructure-of-S5ZZLvrMF0
Publisher
Springer Journals
Copyright
Copyright © 2017 by Springer-Verlag London
Subject
Engineering; Industrial and Production Engineering; Media Management; Mechanical Engineering; Computer-Aided Engineering (CAD, CAE) and Design
ISSN
0268-3768
eISSN
1433-3015
D.O.I.
10.1007/s00170-017-0010-1
Publisher site
See Article on Publisher Site

Abstract

The morphology and microstructure of the weld joint have significant influence on mechanical properties of welded specimens. In this paper, the mechanism on how the external magnetic field affected weld profile and microstructure was discussed by applying the longitudinal steady magnetic field to laser welding for SUS301 stainless steel. The optimal and scanning electron microscopes were used to measure the shape of the cross section and observe the microstructure after welding. The results showed that the shape of the cross section and microstructure could be significantly changed using the external magnetic field. Moreover, joint shape changed distinctly with the magnetic field intensity changing. With the increasing of magnetic flux density, the weld profile of the full penetration model changed from funnel to X type; meanwhile, the bottom weld width increased by 40%. In addition, the partial fusion zone occurred, and the weld width decreased by 20% while penetration increased by 18% when magnetic flux density turned into 380 mT. As far as microstructure of weld joint was concerned, it appeared that application of axial magnetic field led to indistinct fusion line and blocky austenite in big size rather than columnar grain in the center of the cross section. This phenomenon could be explained by numerical simulation results.

Journal

The International Journal of Advanced Manufacturing TechnologySpringer Journals

Published: Jan 14, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off