Influence of annealing on the optoelectronic properties of the GLAD synthesized SiO x –ZnO heterostructure nanoclusters

Influence of annealing on the optoelectronic properties of the GLAD synthesized SiO x –ZnO... We utilized Glancing angle deposition (GLAD) technique to synthesize SiO x –ZnO heterostructure nanoclusters. The as deposited heterostructure nanoclusters were annealed at 550 °C for 1 h in an open air using heating and cooling ramp of 5°C min−1. The FEG-SEM image represents the uneven growth of SiO x –ZnO heterostructure nanoclusters. Due to the agglomeration of smaller nanocluster, SiO x –ZnO heterostructure nanoclusters become more prominent after annealing. EDX indicates the presence of O, Si and Zn. The increase in the concentration of oxygen in annealed SiO x –ZnO heterostructure nanoclusters is attributed to the absorption of O2 molecules during an open air annealing. The formation of heterostructure is shown by the TEM image. The nanoclusters consist of SiO x and ZnO indicating the length of ~ 126 and ~ 97 nm, respectively. The SAED pattern depicts the crystalline nature of ZnO nanoclusters. The XRD pattern revealed that ZnO nanoclusters had wurtzite structure with (100), (002) and (101) orientations. The PL emission at 420 nm is ascribed to the radiative recombination of photoexcited electrons in the conduction band (CB) of ZnO and acceptor such as traps present in SiO x . The band gap significantly increases to 3.45 eV after annealing and it corresponds to main band gap of ZnO. The FTIR result shows the bonding of SiO x –ZnO heterostructure nanoclusters. In addition to the above measurement, we determined the I–V characteristics of the as deposited and annealed SiO x –ZnO heterostructure nanoclusters. The as deposited sample shows schottky behavior which is applicable for nanoscale optoelectronic devices whereas the ohmic nature obtained after open air annealing is suitable for the application of solar cells. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Applied Physics A: Materials Science Processing Springer Journals

Influence of annealing on the optoelectronic properties of the GLAD synthesized SiO x –ZnO heterostructure nanoclusters

Loading next page...
 
/lp/springer_journal/influence-of-annealing-on-the-optoelectronic-properties-of-the-glad-yiHfJ0UXRU
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2018 by Springer-Verlag GmbH Germany, part of Springer Nature
Subject
Physics; Condensed Matter Physics; Optical and Electronic Materials; Nanotechnology; Characterization and Evaluation of Materials; Surfaces and Interfaces, Thin Films; Operating Procedures, Materials Treatment
ISSN
0947-8396
eISSN
1432-0630
D.O.I.
10.1007/s00339-018-1687-1
Publisher site
See Article on Publisher Site

Abstract

We utilized Glancing angle deposition (GLAD) technique to synthesize SiO x –ZnO heterostructure nanoclusters. The as deposited heterostructure nanoclusters were annealed at 550 °C for 1 h in an open air using heating and cooling ramp of 5°C min−1. The FEG-SEM image represents the uneven growth of SiO x –ZnO heterostructure nanoclusters. Due to the agglomeration of smaller nanocluster, SiO x –ZnO heterostructure nanoclusters become more prominent after annealing. EDX indicates the presence of O, Si and Zn. The increase in the concentration of oxygen in annealed SiO x –ZnO heterostructure nanoclusters is attributed to the absorption of O2 molecules during an open air annealing. The formation of heterostructure is shown by the TEM image. The nanoclusters consist of SiO x and ZnO indicating the length of ~ 126 and ~ 97 nm, respectively. The SAED pattern depicts the crystalline nature of ZnO nanoclusters. The XRD pattern revealed that ZnO nanoclusters had wurtzite structure with (100), (002) and (101) orientations. The PL emission at 420 nm is ascribed to the radiative recombination of photoexcited electrons in the conduction band (CB) of ZnO and acceptor such as traps present in SiO x . The band gap significantly increases to 3.45 eV after annealing and it corresponds to main band gap of ZnO. The FTIR result shows the bonding of SiO x –ZnO heterostructure nanoclusters. In addition to the above measurement, we determined the I–V characteristics of the as deposited and annealed SiO x –ZnO heterostructure nanoclusters. The as deposited sample shows schottky behavior which is applicable for nanoscale optoelectronic devices whereas the ohmic nature obtained after open air annealing is suitable for the application of solar cells.

Journal

Applied Physics A: Materials Science ProcessingSpringer Journals

Published: Feb 21, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Access to DeepDyve database
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off