Infinite loop spaces and positive scalar curvature

Infinite loop spaces and positive scalar curvature We study the homotopy type of the space of metrics of positive scalar curvature on high-dimensional compact spin manifolds. Hitchin used the fact that there are no harmonic spinors on a manifold with positive scalar curvature to construct a secondary index map from the space of positive scalar metrics to a suitable space from the real K-theory spectrum. Our main results concern the nontriviality of this map. We prove that for $$2n \ge 6$$ 2 n ≥ 6 , the natural KO-orientation from the infinite loop space of the Madsen–Tillmann–Weiss spectrum factors (up to homotopy) through the space of metrics of positive scalar curvature on any 2n-dimensional spin manifold. For manifolds of odd dimension $$2n+1 \ge 7$$ 2 n + 1 ≥ 7 , we prove the existence of a similar factorisation. When combined with computational methods from homotopy theory, these results have strong implications. For example, the secondary index map is surjective on all rational homotopy groups. We also present more refined calculations concerning integral homotopy groups. To prove our results we use three major sets of technical tools and results. The first set of tools comes from Riemannian geometry: we use a parameterised version of the Gromov–Lawson surgery technique which allows us to apply homotopy-theoretic techniques to spaces of metrics of positive scalar curvature. Secondly, we relate Hitchin’s secondary index to several other index-theoretical results, such as the Atiyah–Singer family index theorem, the additivity theorem for indices on noncompact manifolds and the spectral flow index theorem. Finally, we use the results and tools developed recently in the study of moduli spaces of manifolds and cobordism categories. The key new ingredient we use in this paper is the high-dimensional analogue of the Madsen–Weiss theorem, proven by Galatius and the third named author. Inventiones mathematicae Springer Journals

Infinite loop spaces and positive scalar curvature

Loading next page...
Springer Berlin Heidelberg
Copyright © 2017 by Springer-Verlag Berlin Heidelberg
Mathematics; Mathematics, general
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial