Infection of cynomolgus macaques with a recombinant monkeypox virus encoding green fluorescent protein

Infection of cynomolgus macaques with a recombinant monkeypox virus encoding green fluorescent... Monkeypox virus (MPXV) causes a vesiculopustular rash illness resembling smallpox in humans and produces a similar disease in nonhuman primates. To enhance the ability of researchers to study experimental MPXV infections, we inserted a gene encoding green fluorescent protein (GFP) into Monkeypox virus Zaire-79. Wild-type and MPXV-GFP replicated with similar kinetics in cell culture and caused a similar disease when injected intravenously into cynomolgus macaques. In MPXV-GFP-infected animals, examination under fluorescent light facilitated the identification of skin lesions during disease development and internal sites of replication at necropsy. MPXV-GFP could improve the quantitative assessment of antiviral therapy and vaccine efficacy. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Archives of Virology Springer Journals

Infection of cynomolgus macaques with a recombinant monkeypox virus encoding green fluorescent protein

Loading next page...
 
/lp/springer_journal/infection-of-cynomolgus-macaques-with-a-recombinant-monkeypox-virus-u6hP5K605D
Publisher
Springer Journals
Copyright
Copyright © 2011 by Springer-Verlag
Subject
Biomedicine; Virology; Infectious Diseases; Medical Microbiology
ISSN
0304-8608
eISSN
1432-8798
D.O.I.
10.1007/s00705-011-1065-1
Publisher site
See Article on Publisher Site

Abstract

Monkeypox virus (MPXV) causes a vesiculopustular rash illness resembling smallpox in humans and produces a similar disease in nonhuman primates. To enhance the ability of researchers to study experimental MPXV infections, we inserted a gene encoding green fluorescent protein (GFP) into Monkeypox virus Zaire-79. Wild-type and MPXV-GFP replicated with similar kinetics in cell culture and caused a similar disease when injected intravenously into cynomolgus macaques. In MPXV-GFP-infected animals, examination under fluorescent light facilitated the identification of skin lesions during disease development and internal sites of replication at necropsy. MPXV-GFP could improve the quantitative assessment of antiviral therapy and vaccine efficacy.

Journal

Archives of VirologySpringer Journals

Published: Oct 1, 2011

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off