Induction of Reactive Oxygen Species and Phytoalexins in Onion (Allium cepa) Cell Culture by Biotic Elicitors Derived from the Fungus Botrytis cinerea

Induction of Reactive Oxygen Species and Phytoalexins in Onion (Allium cepa) Cell Culture by... Metabolites of a phytopathogenic fungus Botrytis cinerea Pers. were analyzed for the presence of biotic elicitors. Three groups of elicitors competent in inducing defense responses inAllium cepa cells were identified and partly purified. The recognition of the elicitor signal in onion cells was shown to elevate the concentration of reactive oxygen species (ROS), namely, superoxide anion-radical (O2^{\overset{-}.}) and hydrogen peroxide (Н2О2). The intensity of ROS release depended on chemical identity of elicitor and its concentration. The most active ROS production in onion cells was induced by a protein fraction isolated from the medium for fungus culturing. The carbohydrate elicitors extracted from the fungus cytoplasm and cell walls of mycelia were much less effective. The dynamics of ROS generation comprised two stages. The first stage represented fast and low-amplitude changes that peaked in 15 min after the elicitor treatment. The second stage was more durable and extensive; it occurred in 1.5–6 h after the treatment. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

Induction of Reactive Oxygen Species and Phytoalexins in Onion (Allium cepa) Cell Culture by Biotic Elicitors Derived from the Fungus Botrytis cinerea

Loading next page...
 
/lp/springer_journal/induction-of-reactive-oxygen-species-and-phytoalexins-in-onion-allium-SL8lSSSVPC
Publisher
Kluwer Academic Publishers-Plenum Publishers
Copyright
Copyright © 2004 by MAIK “Nauka/Interperiodica”
Subject
Life Sciences; Plant Sciences
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1023/B:RUPP.0000040745.17893.a7
Publisher site
See Article on Publisher Site

Abstract

Metabolites of a phytopathogenic fungus Botrytis cinerea Pers. were analyzed for the presence of biotic elicitors. Three groups of elicitors competent in inducing defense responses inAllium cepa cells were identified and partly purified. The recognition of the elicitor signal in onion cells was shown to elevate the concentration of reactive oxygen species (ROS), namely, superoxide anion-radical (O2^{\overset{-}.}) and hydrogen peroxide (Н2О2). The intensity of ROS release depended on chemical identity of elicitor and its concentration. The most active ROS production in onion cells was induced by a protein fraction isolated from the medium for fungus culturing. The carbohydrate elicitors extracted from the fungus cytoplasm and cell walls of mycelia were much less effective. The dynamics of ROS generation comprised two stages. The first stage represented fast and low-amplitude changes that peaked in 15 min after the elicitor treatment. The second stage was more durable and extensive; it occurred in 1.5–6 h after the treatment.

Journal

Russian Journal of Plant PhysiologySpringer Journals

Published: Dec 22, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off