Induction of oxidative stress and antioxidant responses in Vigna mungo by zinc stress

Induction of oxidative stress and antioxidant responses in Vigna mungo by zinc stress Significant changes were observed in the antioxidant systems in the leaves of black gram (Vigna mungo L., var. DPU-88-31) grown under deficient and excess supply of Zn. Plant grown with Zn supply ranging from 0.01 to 10.0 μM under glasshouse conditions showed optimal growth and biomass yield at 1.0 μM Zn supply. Deficient (0.001 and 0.01 μM) as well as excess (2.0 and 10.0 μM) supply of Zn decreased the concentrations of chlorophyll, carotenoids, and nonprotein thiols and increased that of ascorbate. The activity of superoxide dismutase and carbonic anhydrase was decreased at deficient levels and increased with increase in Zn supply up to 10 μM. At both stages of growth, the activities of antioxidant enzymes, such as catalase and ascorbate peroxidase, were decreased, whereas the activities of glutathione reductase and peroxidase were increased at both deficient and excess supply of Zn. An accumulation of hydrogen peroxide and thiobarbituric acid-reactive substances was observed in Zn-stressed leaves, indicating oxidative damage. Different responses to deficient and excess supply of Zn were observed in the production of oxidative damage. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

Induction of oxidative stress and antioxidant responses in Vigna mungo by zinc stress

Loading next page...
 
/lp/springer_journal/induction-of-oxidative-stress-and-antioxidant-responses-in-vigna-mungo-KacN3nPZOR
Publisher
SP MAIK Nauka/Interperiodica
Copyright
Copyright © 2011 by Pleiades Publishing, Ltd.
Subject
Life Sciences; Plant Sciences ; Plant Physiology
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1134/S1021443711010079
Publisher site
See Article on Publisher Site

Abstract

Significant changes were observed in the antioxidant systems in the leaves of black gram (Vigna mungo L., var. DPU-88-31) grown under deficient and excess supply of Zn. Plant grown with Zn supply ranging from 0.01 to 10.0 μM under glasshouse conditions showed optimal growth and biomass yield at 1.0 μM Zn supply. Deficient (0.001 and 0.01 μM) as well as excess (2.0 and 10.0 μM) supply of Zn decreased the concentrations of chlorophyll, carotenoids, and nonprotein thiols and increased that of ascorbate. The activity of superoxide dismutase and carbonic anhydrase was decreased at deficient levels and increased with increase in Zn supply up to 10 μM. At both stages of growth, the activities of antioxidant enzymes, such as catalase and ascorbate peroxidase, were decreased, whereas the activities of glutathione reductase and peroxidase were increased at both deficient and excess supply of Zn. An accumulation of hydrogen peroxide and thiobarbituric acid-reactive substances was observed in Zn-stressed leaves, indicating oxidative damage. Different responses to deficient and excess supply of Zn were observed in the production of oxidative damage.

Journal

Russian Journal of Plant PhysiologySpringer Journals

Published: Jan 8, 2011

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off