Induction of Ca2+-Activated K+ Current and Transient Outward Currents in Human Capillary Endothelial Cells

Induction of Ca2+-Activated K+ Current and Transient Outward Currents in Human Capillary... Human capillary endothelial cells (HCEC) in normal media contain noninactivating outwardly rectifying chloride currents, TEA-sensitive delayed rectifier K+ currents and an inward rectifier K+ current. Two additional ionic currents are induced in HCEC when the media are allowed to become conditioned: A Ca2+-activated K+ current (BKCA) that is sensitive to iberiotoxin is induced in 23.5% of the cells, a transient 4-AP-sensitive K+ current (A current) is induced in 24.7% of the cells, and in 22.3% of the cells both the transient and BKCA currents are coinduced. The EC50 for Ca2+ activation of the BKCA current in HCEC from conditioned media is 213 nM. RNA message for BKCA (hSlo clone) is undetecable after PCR amplification in control cells but is seen in those from conditioned cells. The induction of BKCA current is not blocked by conditioning with inhibitors of nitric oxide synthase, cyclo-oxgenase or lypo-oxygenase pathways. Apparently the characteristics of human endothelial cells are highly malleable and can be easily modified by their local environment. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

Induction of Ca2+-Activated K+ Current and Transient Outward Currents in Human Capillary Endothelial Cells

Loading next page...
 
/lp/springer_journal/induction-of-ca2-activated-k-current-and-transient-outward-currents-in-EmUn1JGBqV
Publisher
Springer-Verlag
Copyright
Copyright © Inc. by 1999 Springer-Verlag New York
Subject
Life Sciences; Biochemistry, general; Human Physiology
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s002329900471
Publisher site
See Article on Publisher Site

Abstract

Human capillary endothelial cells (HCEC) in normal media contain noninactivating outwardly rectifying chloride currents, TEA-sensitive delayed rectifier K+ currents and an inward rectifier K+ current. Two additional ionic currents are induced in HCEC when the media are allowed to become conditioned: A Ca2+-activated K+ current (BKCA) that is sensitive to iberiotoxin is induced in 23.5% of the cells, a transient 4-AP-sensitive K+ current (A current) is induced in 24.7% of the cells, and in 22.3% of the cells both the transient and BKCA currents are coinduced. The EC50 for Ca2+ activation of the BKCA current in HCEC from conditioned media is 213 nM. RNA message for BKCA (hSlo clone) is undetecable after PCR amplification in control cells but is seen in those from conditioned cells. The induction of BKCA current is not blocked by conditioning with inhibitors of nitric oxide synthase, cyclo-oxgenase or lypo-oxygenase pathways. Apparently the characteristics of human endothelial cells are highly malleable and can be easily modified by their local environment.

Journal

The Journal of Membrane BiologySpringer Journals

Published: Jan 1, 1999

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off